共 50 条
Solvent effects on the vibrational spectrum of 3-hydroxyflavone
被引:10
作者:
Seitsonen, Ari Paavo
[1
,2
,3
,4
]
Idrissi, Abdenacer
[5
]
Protti, Stefano
[6
]
Mezzetti, Alberto
[7
]
机构:
[1] Univ Zurich, Inst Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Ecole Normale Super, Dept Chim, 24 Rue Lhomond, F-75005 Paris, France
[3] Sorbonne Univ, F-75005 Paris, France
[4] CNRS, F-75005 Paris, France
[5] Univ Sci & Technol Lille, LASIR UMR 8516, Bat C5, F-59655 Villeneuve Dascq, France
[6] Univ Pavia, Dept Chem, PhotoGreen Lab, Viale Taramelli 10, I-27100 Pavia, Italy
[7] Sorbonne Univ, UMR CNRS 7197, Lab Reactivite Surface, 4 Pl Jussieu, F-75005 Paris, France
关键词:
ENHANCED RAMAN-SCATTERING;
STATE PROTON-TRANSFER;
GROUND-STATE;
SPECTROSCOPY;
FLAVONOIDS;
QUERCETIN;
PHOTOOXYGENATION;
ESIPT;
SOIL;
D O I:
10.1016/j.molliq.2018.11.020
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
3-hydroxyflavone (3HF) is a widely studied molecule that acts as a simplified prototype of biological, more complex flavonoids. Its solvation mechanism is still under investigation. Here we report a joint experimental and simulation study of the vibrational properties of 3HF in gas phase and in simple liquids tetrachloromethane, chloroform and acetonitrile using infra-red (IR) and Raman spectroscopies. We find reasonably good agreement between the static and molecular dynamics simulations employing density functional theory at the level of generalised gradient approximation (GGA) and hybrid functionals, but the agreement with the experimental spectra is only reasonable in the case of the IR spectroscopy and relatively poor in the case of Raman spectroscopy. The results can, however, be used as a starting point for discussing the solvation behaviour of the flavonoids. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:723 / 728
页数:6
相关论文
共 50 条