REMOVAL OF METHYLENE BLUE DYE FROM SIMULATED WASTEWATER BY ALGINIC ACID FIBER AS ADSORBENT: EQUILIBRIUM, KINETIC, AND THERMODYNAMIC STUDIES

被引:8
作者
Guo, Chunxiang [1 ]
Kong, Qingshan [1 ]
Gao, Jixian [2 ]
Ji, Quan [1 ]
Xia, Yanzhi [1 ]
机构
[1] Qingdao Univ, State Key Lab Cultivating Base Adv Fibers & Moder, Qingdao 266071, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
alginic acid fiber; methylene blue; adsorption; isotherm models; kinetic models; AQUEOUS-SOLUTION; ADSORPTION; BIOSORPTION; SORPTION; PEEL;
D O I
10.1002/cjce.20481
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Alginic acid fiber was used as a novel adsorbent to remove methylene blue from aqueous solution, and adsorption mechanisms were investigated. System variables, including contact time, pH, temperature, and initial concentration were examined to investigate the effect on adsorption in batch experiments. The results showed that equilibrium reached in less than 20 min and pH significantly influenced the equilibrium value. Langmuir, Freundlich, and Temkin isotherm models were employed to analyse the isotherm behaviours. It was found the isotherm behaviours conform to Freundlich and Temkin models well, indicating a chemisorption process. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were employed to investigate kinetic behaviours. The kinetic behaviour is best described by pseudo-second-order model. Thermodynamic parameters indicate that the process is spontaneous and exothermic.
引用
收藏
页码:1545 / 1553
页数:9
相关论文
共 32 条
[1]   Application of biosorption for the removal of organic pollutants: A review [J].
Aksu, Z .
PROCESS BIOCHEMISTRY, 2005, 40 (3-4) :997-1026
[2]   Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study [J].
Al-Ghouti, Mohammad A. ;
Khraisheh, Majeda A. M. ;
Ahmad, Mohammad N. M. ;
Allen, Stephen .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 165 (1-3) :589-598
[3]   THE SURFACE-CHEMISTRY OF GOETHITE (ALPHA-FEOOH) IN MAJOR ION SEAWATER [J].
BALISTRIERI, LS ;
MURRAY, JW .
AMERICAN JOURNAL OF SCIENCE, 1981, 281 (06) :788-806
[4]   Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder [J].
Bhattacharyya, KG ;
Sharma, A .
DYES AND PIGMENTS, 2005, 65 (01) :51-59
[5]   Sorption kinetics for the removal of copper and zinc from effluents using bone char [J].
Cheung, CW ;
Porter, JF ;
McKay, G .
SEPARATION AND PURIFICATION TECHNOLOGY, 2000, 19 (1-2) :55-64
[6]   Intraparticle diffusion processes during acid dye adsorption onto chitosan [J].
Cheung, W. H. ;
Szeto, Y. S. ;
McKay, G. .
BIORESOURCE TECHNOLOGY, 2007, 98 (15) :2897-2904
[7]   Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models [J].
Chiron, N ;
Guilet, R ;
Deydier, E .
WATER RESEARCH, 2003, 37 (13) :3079-3086
[8]   Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies [J].
Crini, Gregorio ;
Peindy, Harmel Ndongo ;
Gimbert, Frederic ;
Robert, Capucine .
SEPARATION AND PURIFICATION TECHNOLOGY, 2007, 53 (01) :97-110
[9]  
Freundlich H, 1906, Z PHYS CHEM-STOCH VE, V57, P385
[10]   Basic dye (methylene blue) removal from simulated wastewater by adsorption sawdust: a timber using Indian Rosewood industry waste [J].
Garg, VK ;
Amita, M ;
Kumar, R ;
Gupta, R .
DYES AND PIGMENTS, 2004, 63 (03) :243-250