Model Calibration via Deformation

被引:5
作者
Kleiber, William [1 ]
Sain, Stephan R. [2 ]
Wiltberger, Michael J. [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Natl Ctr Atmospher Res, Inst Math Appl Geosci, Geophys Stat Project, Boulder, CO 80307 USA
[3] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2014年 / 2卷 / 01期
基金
美国国家科学基金会;
关键词
calibration; computer experiment; deformation; discrepancy; image warping; misalignment; space-time displacement; IMAGE; FRAMEWORK;
D O I
10.1137/130935367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dynamical computer models often exhibit space-time features that are partially misaligned or misshapen when compared to observational data. Whether due to approximate numerical schemes, incomplete physics, or estimated boundary conditions, the goal of calibrating these models to field data involves optimally aligning model output with observed features. The traditional approach to correcting model discrepancy is to introduce an additive and/or multiplicative bias. Especially for dynamical models, systematic bias may alternatively be viewed as deformation bias. We introduce an expanded approach to model calibration in the presence of space-time feature discrepancy. Borrowing ideas from the image warping literature, we propose a nonlinear deformation of the computer model that optimally aligns with observed images; probabilistically this manifests as a transformation of model coordinate space with a variational penalty on the likelihood function. We apply the approach to a dynamical magnetosphere-ionosphere computer model that exhibits challenging feature discrepancies, and we successfully identify a region of input parameter space that simultaneously minimizes model error and discrepancy from field data.
引用
收藏
页码:545 / 563
页数:19
相关论文
共 36 条
[1]   An image warping approach to spatio-temporal modelling [J].
Aberg, S ;
Lindgren, F ;
Malmberg, A ;
Holst, J ;
Holst, U .
ENVIRONMETRICS, 2005, 16 (08) :833-848
[2]  
Allassonnière S, 2007, J R STAT SOC B, V69, P3
[3]   A NONLINEAR VARIATIONAL PROBLEM FOR IMAGE MATCHING [J].
AMIT, Y .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :207-224
[4]   IMAGE WARPING USING FEW ANCHOR POINTS AND RADIAL FUNCTIONS [J].
ARAD, N ;
REISFELD, D .
COMPUTER GRAPHICS FORUM, 1995, 14 (01) :35-46
[5]   Stationary process approximation for the analysis of large spatial datasets [J].
Banerjee, Sudipto ;
Gelfand, Alan E. ;
Finley, Andrew O. ;
Sang, Huiyan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :825-848
[6]   A framework for validation of computer models [J].
Bayarri, Maria J. ;
Berger, James O. ;
Paulo, Rui ;
Sacks, Jerry ;
Cafeo, John A. ;
Cavendish, James ;
Lin, Chin-Hsu ;
Tu, Jian .
TECHNOMETRICS, 2007, 49 (02) :138-154
[8]   Modeling Nonstationary Processes Through Dimension Expansion [J].
Bornn, Luke ;
Shaddick, Gavin ;
Zidek, James V. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) :281-289
[9]  
Brown B.G., 2012, Forecast Verification, P95, DOI [10.1002/9781119960003.ch6, DOI 10.1002/9781119960003.CH6]
[10]   Gaussian process emulation of dynamic computer codes [J].
Conti, S. ;
Gosling, J. P. ;
Oakley, J. E. ;
O'Hagan, A. .
BIOMETRIKA, 2009, 96 (03) :663-676