Renormalized energy for Ginzburg-Landau vortices on closed surfaces

被引:13
作者
Qing, J
机构
[1] Department of Mathematics, Columbia University, New York
关键词
D O I
10.1007/PL00004303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 34
页数:34
相关论文
共 21 条
[1]  
[Anonymous], GINZBURG LANDAU VORT
[2]  
[Anonymous], TEOR FIZ
[3]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[4]  
Aubin Thierry, 1982, GRUNDLEHREN MATH WIS, V252
[5]   ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL [J].
BETHUEL, F ;
BREZIS, H ;
HELEIN, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :123-148
[6]  
BETHUEL F, 1994, VORTICES VARIATIONAL
[7]   VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS [J].
BRADLOW, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :1-17
[8]  
BREZIS H, IN PRESS ARCH RATION
[9]   A DIRECT EXISTENCE PROOF FOR THE VORTEX EQUATIONS OVER A COMPACT RIEMANN SURFACE [J].
GARCIAPRADA, O .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :88-96
[10]  
Giaquinta M., 1983, MULTIPLE INTEGRALS C, V105