Regularity results for the gradient of solutions of a class of linear elliptic systems with L1,λ data

被引:19
作者
Cirmi, G. R. [1 ]
Leonardi, S. [1 ]
Stara, J. [2 ]
机构
[1] Univ Catania, Dipartimento Math & Informat, I-95125 Catania, Italy
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, CR-18600 Prague 8, Czech Republic
关键词
D O I
10.1016/j.na.2007.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if a vector-function f belongs to the Morrey space L-1,L-lambda(Omega, R-N), with Omega subset of R-n, n >= 3, N >= 2, lambda epsilon|0, n - 2|, and u is the solution of the system {-D-i(A(ij)(x)D-ju) = f in Omega u epsilon W-0(1,1) (Omega, R-N) then Du belongs to the space L-q,L-n-q(n-lambda-1)(Omega, R-nN), for any q epsilon [1, n/n-1[, provided the matrix of bounded measurable coefficients (A(ij)) has sufficiently small dispersion of the eigenvalues. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3609 / 3624
页数:16
相关论文
共 29 条
  • [1] Amann H., 1998, ADV DIFFERENTIAL EQU, V3, P753
  • [2] BENILAN P, 1995, ANN SC NORM SUP PI 4, V22
  • [3] BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
  • [4] NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA
    BOCCARDO, L
    GALLOUET, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) : 149 - 169
  • [5] BOCCARDO L, 1997, B UNIONE MAT ITAL A, V11
  • [6] BREZIS H, 1986, ANAL FUNZIONALE
  • [7] Campanato, 1965, ANN MAT PURA APPL, V69
  • [8] CAMPANATO S, 1963, RICERCHE MAT, V12
  • [9] CAMPANATO S, 1987, ADV MATH, V66
  • [10] CAMPANATO S, 1980, Q SC NORM SUP PISA