Convergence rate of numerical solutions to SFDEs with jumps

被引:34
作者
Bao, Jianhai [1 ]
Boettcher, Bjoern [2 ]
Mao, Xuerong [3 ]
Yuan, Chenggui [1 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Tech Univ Dresden, Dept Math, D-01062 Dresden, Germany
[3] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
关键词
Euler-Maruyama; Local Lipschitz condition; SFDE; Convergence rate; Poisson process; STOCHASTIC DIFFERENTIAL-EQUATIONS; EULER;
D O I
10.1016/j.cam.2011.05.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in numerical solutions of stochastic functional differential equations with jumps. Under a global Lipschitz condition, we show that the pth-moment convergence of Euler-Maruyama numerical solutions to stochastic functional differential equations with jumps has order 1/p for any p >= 2. This is significantly different from the case of stochastic functional differential equations without jumps, where the order is 1/2 for any p >= 2. It is therefore best to use the mean-square convergence for stochastic functional differential equations with jumps. Moreover, under a local Lipschitz condition, we reveal that the order of mean-square convergence is close to 1/2, provided that local Lipschitz constants, valid on balls of radius j, do not grow faster than logj. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 131
页数:13
相关论文
共 13 条
[1]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[2]  
Cont R., 2004, Financial Modelling with Jump Processes
[3]   Global flows for stochastic differential equations without global Lipschitz conditions [J].
Fang, Shizan ;
Imkeller, Peter ;
Zhang, Tusheng .
ANNALS OF PROBABILITY, 2007, 35 (01) :180-205
[4]   The compound option approach to American options on jump-diffusions [J].
Gukhal, CR .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2004, 28 (10) :2055-2074
[5]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI [10.1007/978-1-4612-4342-7, DOI 10.1007/978-1-4612-4342-7]
[6]   Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems [J].
Higham, Desmond J. ;
Kloeden, Peter E. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (02) :949-956
[7]   Numerical methods for nonlinear stochastic differential equations with jumps [J].
Higham, DJ ;
Kloeden, PE .
NUMERISCHE MATHEMATIK, 2005, 101 (01) :101-119
[8]  
Kolmanovskii V.B., 1981, STABILITY PERIODIC M
[9]  
Mao X., 2007, Stochastic Differential Equations and Applications, V2nd, DOI DOI 10.1533/9780857099402
[10]  
Mao X., 2003, LMS J COMPUT MATH, V6, P141, DOI [10.1112/S1461157000000425, DOI 10.1112/S1461157000000425]