Dual-microcavity narrow-linewidth Brillouin laser

被引:109
作者
Loh, William [1 ]
Green, Adam A. S. [1 ]
Baynes, Fred N. [1 ]
Cole, Daniel C. [1 ]
Quinlan, Franklyn J. [1 ]
Lee, Hansuek [2 ]
Vahala, Kerry J. [2 ]
Papp, Scott B. [1 ]
Diddams, Scott A. [1 ]
机构
[1] NIST, Time & Frequency Div, Boulder, CO 80305 USA
[2] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
关键词
GALLERY-MODE RESONATORS; FREQUENCY STABILIZATION; CAVITY; NOISE; GENERATION; REFERENCES; PHASE; CHIP;
D O I
10.1364/OPTICA.2.000225
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ultralow-noise yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include lidar, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to 7.8 x 10(-14) 1/root Hz at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our dual-microcavity laser by performing spectral linewidth measurements with hertz-level resolution. (C) 2015 Optical Society of America.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 43 条
[11]  
Fortier TM, 2011, NAT PHOTONICS, V5, P425, DOI [10.1038/nphoton.2011.121, 10.1038/NPHOTON.2011.121]
[12]   Silicon-based monolithic optical frequency comb source [J].
Foster, Mark A. ;
Levy, Jacob S. ;
Kuzucu, Onur ;
Saha, Kasturi ;
Lipson, Michal ;
Gaeta, Alexander L. .
OPTICS EXPRESS, 2011, 19 (15) :14233-14239
[13]   Fundamental thermal fluctuations in microspheres [J].
Gorodetsky, ML ;
Grudinin, IS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (04) :697-705
[14]   Brillouin Lasing with a CaF2 Whispering Gallery Mode Resonator [J].
Grudinin, Ivan S. ;
Matsko, Andrey B. ;
Maleki, Lute .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[15]   Hybrid Silicon Photonic Integrated Circuit Technology [J].
Heck, Martijn J. R. ;
Bauters, Jared F. ;
Davenport, Michael L. ;
Doylend, Jonathan K. ;
Jain, Siddharth ;
Kurczveil, Geza ;
Srinivasan, Sudharsanan ;
Tang, Yongbo ;
Bowers, John E. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
[16]   SEMICONDUCTOR-LASER STABILIZATION BY EXTERNAL OPTICAL FEEDBACK [J].
HJELME, DR ;
MICKELSON, AR ;
BEAUSOLEIL, RG .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (03) :352-372
[17]   Coherent detection in optical fiber systems [J].
Ip, Ezra ;
Lau, Alan Pak Tao ;
Barros, Daniel J. F. ;
Kahn, Joseph M. .
OPTICS EXPRESS, 2008, 16 (02) :753-791
[18]   STIMULATED BRILLOUIN-SCATTERING IN OPTICAL FIBERS [J].
IPPEN, EP ;
STOLEN, RH .
APPLIED PHYSICS LETTERS, 1972, 21 (11) :539-&
[19]   Making optical atomic clocks more stable with 10-16-level laser stabilization [J].
Jiang, Y. Y. ;
Ludlow, A. D. ;
Lemke, N. D. ;
Fox, R. W. ;
Sherman, J. A. ;
Ma, L. -S. ;
Oates, C. W. .
NATURE PHOTONICS, 2011, 5 (03) :158-161
[20]   Narrow linewidth Brillouin laser based on chalcogenide photonic chip [J].
Kabakova, Irina V. ;
Pant, Ravi ;
Choi, Duk-Yong ;
Debbarma, Sukhanta ;
Luther-Davies, Barry ;
Madden, Stephen J. ;
Eggleton, Benjamin J. .
OPTICS LETTERS, 2013, 38 (17) :3208-3211