Dual-microcavity narrow-linewidth Brillouin laser

被引:109
作者
Loh, William [1 ]
Green, Adam A. S. [1 ]
Baynes, Fred N. [1 ]
Cole, Daniel C. [1 ]
Quinlan, Franklyn J. [1 ]
Lee, Hansuek [2 ]
Vahala, Kerry J. [2 ]
Papp, Scott B. [1 ]
Diddams, Scott A. [1 ]
机构
[1] NIST, Time & Frequency Div, Boulder, CO 80305 USA
[2] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
关键词
GALLERY-MODE RESONATORS; FREQUENCY STABILIZATION; CAVITY; NOISE; GENERATION; REFERENCES; PHASE; CHIP;
D O I
10.1364/OPTICA.2.000225
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ultralow-noise yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include lidar, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to 7.8 x 10(-14) 1/root Hz at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our dual-microcavity laser by performing spectral linewidth measurements with hertz-level resolution. (C) 2015 Optical Society of America.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 43 条
[1]   Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization [J].
Alnis, J. ;
Schliesser, A. ;
Wang, C. Y. ;
Hofer, J. ;
Kippenberg, T. J. ;
Haensch, T. W. .
PHYSICAL REVIEW A, 2011, 84 (01)
[2]   Prototype of an ultra-stable optical cavity for space applications. [J].
Argence, B. ;
Prevost, E. ;
Leveque, T. ;
Le Goff, R. ;
Bize, S. ;
Lemonde, P. ;
Santarelli, G. .
OPTICS EXPRESS, 2012, 20 (23) :25409-25420
[3]   Ultra-high-Q toroid microcavity on a chip [J].
Armani, DK ;
Kippenberg, TJ ;
Spillane, SM ;
Vahala, KJ .
NATURE, 2003, 421 (6926) :925-928
[4]   On phase noise of self-injection locked semiconductor lasers [J].
Dale, E. ;
Liang, W. ;
Eliyahu, D. ;
Savchenkov, A. A. ;
Ilchenko, V. S. ;
Matsko, A. B. ;
Seidel, D. ;
Maleki, L. .
LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XVI, 2014, 8960
[5]   Full stabilization of a microresonator-based optical frequency comb [J].
Del'Haye, P. ;
Arcizet, O. ;
Schliesser, A. ;
Holzwarth, R. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[6]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[7]   Laser-machined ultra-high-Q microrod resonators for nonlinear optics [J].
Del'Haye, Pascal ;
Diddams, Scott A. ;
Papp, Scott B. .
APPLIED PHYSICS LETTERS, 2013, 102 (22)
[8]   Hybrid Electro-Optically Modulated Microcombs [J].
Del'Haye, Pascal ;
Papp, Scott B. ;
Diddams, Scott A. .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)
[9]   GHz-bandwidth optical filters based on high-order silicon ring resonators [J].
Dong, Po ;
Feng, Ning-Ning ;
Feng, Dazeng ;
Qian, Wei ;
Liang, Hong ;
Lee, Daniel C. ;
Luff, B. J. ;
Banwell, T. ;
Agarwal, A. ;
Toliver, P. ;
Menendez, R. ;
Woodward, T. K. ;
Asghari, Mehdi .
OPTICS EXPRESS, 2010, 18 (23) :23784-23789
[10]   LASER PHASE AND FREQUENCY STABILIZATION USING AN OPTICAL-RESONATOR [J].
DREVER, RWP ;
HALL, JL ;
KOWALSKI, FV ;
HOUGH, J ;
FORD, GM ;
MUNLEY, AJ ;
WARD, H .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1983, 31 (02) :97-105