CHAOS IN FRACTIONAL-ORDER POPULATION MODEL

被引:10
|
作者
Petras, Ivo [1 ]
机构
[1] Tech Univ Kosice, Fac BERG, Kosice 04200, Slovakia
来源
关键词
Fractional calculus; chaos; fractional-order system; Lotka-Volterra equations; FREQUENCY-DOMAIN APPROXIMATION; SYSTEMS;
D O I
10.1142/S0218127412500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a fractional-order population model which consists of the two-predators and one-prey scheme. For this new model, the numerical solution is derived and the simulations are performed for various sets of model parameters together with stability analysis for commensurate and incomensurate orders of the fractional-order population model. The results obtained via the simulations show that chaos can be observed in such population model.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Chaos and synchronization of the fractional-order Chua's system
    Zhu, Hao
    Zhou, Shangbo
    Zhang, Jun
    CHAOS SOLITONS & FRACTALS, 2009, 39 (04) : 1595 - 1603
  • [42] Nonlinear dynamics and chaos in fractional-order neural networks
    Kaslik, Eva
    Sivasundaram, Seenith
    NEURAL NETWORKS, 2012, 32 : 245 - 256
  • [43] Chaos and hyperchaos in fractional-order cellular neural networks
    Huang, Xia
    Zhao, Zhao
    Wang, Zhen
    Li, Yuxia
    NEUROCOMPUTING, 2012, 94 : 13 - 21
  • [44] Chaos Control and Synchronization Of A Fractional-Order Laser System
    He, Xianghong
    Wang, Heyuan
    Sun, Weipeng
    Lu, Tianxiong
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 268 - 272
  • [45] Chaos control via a simple fractional-order controller
    Tavazoei, Mohammad Saleh
    Haeri, Mohammad
    PHYSICS LETTERS A, 2008, 372 (06) : 798 - 807
  • [46] Elegant Chaos in Fractional-Order System without Equilibria
    Cafagna, Donato
    Grassi, Giuseppe
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [47] AN EFFECTIVE METHOD FOR DETECTING CHAOS IN FRACTIONAL-ORDER SYSTEMS
    Cafagna, Donato
    Grassi, Giuseppe
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (03): : 669 - 678
  • [48] Chaos synchronization of the fractional-order Chen's system
    Zhu, Hao
    Zhou, Shangbo
    He, Zhongshi
    CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2733 - 2740
  • [49] Chaos and chaotic control in a fractional-order electronic oscillator
    Gao, X
    Yu, JB
    CHINESE PHYSICS, 2005, 14 (05): : 908 - 913
  • [50] Threshold for Chaos of a Duffing Oscillator with Fractional-Order Derivative
    Xing, Wuce
    Chen, Enli
    Chang, Yujian
    Wang, Meiqi
    SHOCK AND VIBRATION, 2019, 2019