CHAOS IN FRACTIONAL-ORDER POPULATION MODEL

被引:10
|
作者
Petras, Ivo [1 ]
机构
[1] Tech Univ Kosice, Fac BERG, Kosice 04200, Slovakia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 04期
关键词
Fractional calculus; chaos; fractional-order system; Lotka-Volterra equations; FREQUENCY-DOMAIN APPROXIMATION; SYSTEMS;
D O I
10.1142/S0218127412500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a fractional-order population model which consists of the two-predators and one-prey scheme. For this new model, the numerical solution is derived and the simulations are performed for various sets of model parameters together with stability analysis for commensurate and incomensurate orders of the fractional-order population model. The results obtained via the simulations show that chaos can be observed in such population model.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Chaos, control, and synchronization in some fractional-order difference equations
    Khennaoui, Amina-Aicha
    Ouannas, Adel
    Bendoukha, Samir
    Grassi, Giuseppe
    Wang, Xiong
    Viet-Thanh Pham
    Alsaadi, Fawaz E.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [42] Fractional-Order Memristor-Based Chua's Circuit
    Petras, Ivo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2010, 57 (12) : 975 - 979
  • [43] Chaos in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 603 - 608
  • [44] Chaos and complexity in a fractional-order financial system with time delays
    Wang, Shaojie
    He, Shaobo
    Yousefpour, Amin
    Jahanshahi, Hadi
    Repnik, Robert
    Perc, Matjaz
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [45] Partial chaos suppression in a fractional order macroeconomic model
    David, S. A.
    Machado, J. A. T.
    Quintino, D. D.
    Balthazar, J. M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 122 : 55 - 68
  • [46] Chaos and Synchronization in Complex Fractional-Order Chua's System
    Lin, Xiaoran
    Zhou, Shangbo
    Li, Hua
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (03):
  • [47] Fractional-Order in a Macroeconomic Dynamic Model
    David, S. A.
    Quintino, D. D.
    Soliani, J.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2142 - 2146
  • [48] Is fractional-order chaos theory the new tool to model chaotic pandemics as Covid-19?
    Manashita Borah
    Antara Gayan
    Jiv Siddhi Sharma
    YangQuan Chen
    Zhouchao Wei
    Viet-Thanh Pham
    Nonlinear Dynamics, 2022, 109 : 1187 - 1215
  • [49] Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems
    Ching-Ming Chang
    Hsien-Keng Chen
    Nonlinear Dynamics, 2010, 62 : 851 - 858
  • [50] Is fractional-order chaos theory the new tool to model chaotic pandemics as Covid-19?
    Borah, Manashita
    Gayan, Antara
    Sharma, Jiv Siddhi
    Chen, YangQuan
    Wei, Zhouchao
    Viet-Thanh Pham
    NONLINEAR DYNAMICS, 2022, 109 (02) : 1187 - 1215