CHAOS IN FRACTIONAL-ORDER POPULATION MODEL

被引:10
|
作者
Petras, Ivo [1 ]
机构
[1] Tech Univ Kosice, Fac BERG, Kosice 04200, Slovakia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 04期
关键词
Fractional calculus; chaos; fractional-order system; Lotka-Volterra equations; FREQUENCY-DOMAIN APPROXIMATION; SYSTEMS;
D O I
10.1142/S0218127412500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a fractional-order population model which consists of the two-predators and one-prey scheme. For this new model, the numerical solution is derived and the simulations are performed for various sets of model parameters together with stability analysis for commensurate and incomensurate orders of the fractional-order population model. The results obtained via the simulations show that chaos can be observed in such population model.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Controlling chaos and codimension-two bifurcation in a discrete fractional-order Brusselator model
    Din, Qamar
    JOURNAL OF VIBRATION AND CONTROL, 2024,
  • [32] Complex Canard Explosion in a Fractional-Order FitzHugh-Nagumo Model
    Abdelouahab, Mohammed-Salah
    Lozi, Rene
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (08):
  • [33] Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity
    He, Zai-Yin
    Abbes, Abderrahmane
    Jahanshahi, Hadi
    Alotaibi, Naif D.
    Wang, Ye
    MATHEMATICS, 2022, 10 (02)
  • [34] Comparison of Varied Order for Fractional-Order Model
    Yusof, Nuzaihan Mhd
    Ishak, Norlela
    Adnan, Ramli
    Tajuddin, Mazidah
    Rahiman, Mohd Hezri Fazalul
    2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 334 - 339
  • [35] Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak
    Veisi, Amir
    Delavari, Hadi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3479 - 3496
  • [36] Fractional-order Chua’s system: discretization, bifurcation and chaos
    Ravi P Agarwal
    Ahmed M A El-Sayed
    Sanaa M Salman
    Advances in Difference Equations, 2013
  • [37] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Lin Du
    Yunping Zhao
    Youming Lei
    Jian Hu
    Xiaole Yue
    Nonlinear Dynamics, 2018, 92 : 1921 - 1933
  • [38] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Du, Lin
    Zhao, Yunping
    Lei, Youming
    Hu, Jian
    Yue, Xiaole
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1921 - 1933
  • [39] Chaos in a new fractional-order system without equilibrium points
    Cafagna, Donato
    Grassi, Giuseppe
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2919 - 2927
  • [40] Bifurcation and chaos of a new discrete fractional-order logistic map
    Ji, YuanDong
    Lai, Li
    Zhong, SuChuan
    Zhang, Lu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 : 352 - 358