CHAOS IN FRACTIONAL-ORDER POPULATION MODEL

被引:10
|
作者
Petras, Ivo [1 ]
机构
[1] Tech Univ Kosice, Fac BERG, Kosice 04200, Slovakia
来源
关键词
Fractional calculus; chaos; fractional-order system; Lotka-Volterra equations; FREQUENCY-DOMAIN APPROXIMATION; SYSTEMS;
D O I
10.1142/S0218127412500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a fractional-order population model which consists of the two-predators and one-prey scheme. For this new model, the numerical solution is derived and the simulations are performed for various sets of model parameters together with stability analysis for commensurate and incomensurate orders of the fractional-order population model. The results obtained via the simulations show that chaos can be observed in such population model.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The fractional-order discrete COVID-19 pandemic model: stability and chaos
    Abbes, Abderrahmane
    Ouannas, Adel
    Shawagfeh, Nabil
    Jahanshahi, Hadi
    NONLINEAR DYNAMICS, 2023, 111 (01) : 965 - 983
  • [32] Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives
    Debbouche, Nadjette
    Ouannas, Adel
    Grassi, Giuseppe
    Al-Hussein, Abdul-Basset A.
    Tahir, Fadhil Rahma
    Saad, Khaled M.
    Jahanshahi, Hadi
    Aly, Ayman A.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [33] A new fractional-order discrete BVP oscillator model with coexisting chaos and hyperchaos
    Tianming Liu
    Jun Mou
    Santo Banerjee
    Yinghong Cao
    Xintong Han
    Nonlinear Dynamics, 2021, 106 : 1011 - 1026
  • [34] Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives
    Debbouche, Nadjette
    Ouannas, Adel
    Grassi, Giuseppe
    Al-Hussein, Abdul-Basset A.
    Tahir, Fadhil Rahma
    Saad, Khaled M.
    Jahanshahi, Hadi
    Aly, Ayman A.
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [35] A new fractional-order discrete BVP oscillator model with coexisting chaos and hyperchaos
    Liu, Tianming
    Mou, Jun
    Banerjee, Santo
    Cao, Yinghong
    Han, Xintong
    NONLINEAR DYNAMICS, 2021, 106 (01) : 1011 - 1026
  • [36] TRAVELLING WAVES SOLUTION FOR FRACTIONAL-ORDER BIOLOGICAL POPULATION MODEL
    Khan, Hassan
    Shah, Rasool
    Gomez-Aguilar, J. F.
    Shoaib
    Baleanu, Dumitru
    Kumam, Poom
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16
  • [37] The fractional-order discrete COVID-19 pandemic model: stability and chaos
    Abderrahmane Abbes
    Adel Ouannas
    Nabil Shawagfeh
    Hadi Jahanshahi
    Nonlinear Dynamics, 2023, 111 : 965 - 983
  • [38] Chaos and chaos synchronization for fractional-order degenerate optical parametric oscillator
    Dept. of Physics and Information Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
    Bandaoti Guangdian, 2008, 4 (524-527):
  • [39] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    OPTIK, 2015, 126 (21): : 2965 - 2973
  • [40] Chaos Synchronization of Fractional-Order Lur'e Systems
    Bouridah, Mohammed Salah
    Bouden, Toufik
    Yalcin, Mustak Erhan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (14):