CHAOS IN FRACTIONAL-ORDER POPULATION MODEL

被引:10
|
作者
Petras, Ivo [1 ]
机构
[1] Tech Univ Kosice, Fac BERG, Kosice 04200, Slovakia
来源
关键词
Fractional calculus; chaos; fractional-order system; Lotka-Volterra equations; FREQUENCY-DOMAIN APPROXIMATION; SYSTEMS;
D O I
10.1142/S0218127412500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a fractional-order population model which consists of the two-predators and one-prey scheme. For this new model, the numerical solution is derived and the simulations are performed for various sets of model parameters together with stability analysis for commensurate and incomensurate orders of the fractional-order population model. The results obtained via the simulations show that chaos can be observed in such population model.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Chaos control strategy for a fractional-order financial model
    Xu, Changjin
    Aouiti, Chaouki
    Liao, Maoxin
    Li, Peiluan
    Liu, Zixin
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Chaos control strategy for a fractional-order financial model
    Changjin Xu
    Chaouki Aouiti
    Maoxin Liao
    Peiluan Li
    Zixin Liu
    Advances in Difference Equations, 2020
  • [3] Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model
    Ye, Haiping
    Ding, Yongsheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [4] Mathematical insights into chaos in fractional-order fishery model
    Chen Zakirullah
    Liang Lu
    Kamal Li
    Bahaaeldin Shah
    Thabet Abdalla
    undefined Abdeljawad
    Modeling Earth Systems and Environment, 2025, 11 (3)
  • [5] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [6] Chaos control of an atomic force microscopy model in fractional-order
    Angelo M. Tusset
    Jose M. Balthazar
    Mauricio A. Ribeiro
    Wagner B. Lenz
    Rodrigo T. Rocha
    The European Physical Journal Special Topics, 2021, 230 : 3643 - 3654
  • [7] Chaos in a Fractional-Order Dynamical Model of Love and Its Control
    Cu, Rencai
    Xu, Yong
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 349 - 356
  • [8] Chaos in the fractional-order Lorenz system
    Wu, Xiang-Jun
    Shen, Shi-Lei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (07) : 1274 - 1282
  • [9] Chaos in a fractional-order Rossler system
    Zhang, Weiwei
    Zhou, Shangbo
    Li, Hua
    Zhu, Hao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1684 - 1691
  • [10] Chaos control and solutions of fractional-order Malkus waterwheel model
    Akinlar, Mehmet Ali
    Tchier, Fairouz
    Inc, Mustafa
    CHAOS SOLITONS & FRACTALS, 2020, 135