CHAOS IN FRACTIONAL-ORDER POPULATION MODEL

被引:10
|
作者
Petras, Ivo [1 ]
机构
[1] Tech Univ Kosice, Fac BERG, Kosice 04200, Slovakia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 04期
关键词
Fractional calculus; chaos; fractional-order system; Lotka-Volterra equations; FREQUENCY-DOMAIN APPROXIMATION; SYSTEMS;
D O I
10.1142/S0218127412500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a fractional-order population model which consists of the two-predators and one-prey scheme. For this new model, the numerical solution is derived and the simulations are performed for various sets of model parameters together with stability analysis for commensurate and incomensurate orders of the fractional-order population model. The results obtained via the simulations show that chaos can be observed in such population model.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Chaos in a Fractional-Order Cancer System
    N'Doye, Ibrahima
    Voos, Holger
    Darouach, Mohamed
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 171 - 176
  • [2] Mathematical insights into chaos in fractional-order fishery model
    Chen Zakirullah
    Liang Lu
    Kamal Li
    Bahaaeldin Shah
    Thabet Abdalla
    undefined Abdeljawad
    Modeling Earth Systems and Environment, 2025, 11 (3)
  • [3] Chaos in the fractional-order Volta's system: modeling and simulation
    Petras, Ivo
    NONLINEAR DYNAMICS, 2009, 57 (1-2) : 157 - 170
  • [4] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [5] Chaos control and solutions of fractional-order Malkus waterwheel model
    Akinlar, Mehmet Ali
    Tchier, Fairouz
    Inc, Mustafa
    CHAOS SOLITONS & FRACTALS, 2020, 135
  • [6] Chaos in a Fractional-Order Jerk Model Using Tanh Nonlinearity
    Srisuchinwong, Banlue
    CHAOTIC SYSTEMS: THEORY AND APPLICATIONS, 2010, : 338 - 345
  • [7] Chaos in the fractional-order Lorenz system
    Wu, Xiang-Jun
    Shen, Shi-Lei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (07) : 1274 - 1282
  • [8] Nonlinear dynamics and chaos in fractional-order neural networks
    Kaslik, Eva
    Sivasundaram, Seenith
    NEURAL NETWORKS, 2012, 32 : 245 - 256
  • [9] BIFURCATIONS AND CHAOS IN FRACTIONAL-ORDER SIMPLIFIED LORENZ SYSTEM
    Sun, Kehui
    Wang, Xia
    Sprott, J. C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (04): : 1209 - 1219
  • [10] Exact Solutions of Fractional-Order Biological Population Model
    El-Sayed, A. M. A.
    Rida, S. Z.
    Arafa, A. A. M.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (06) : 992 - 996