O'Neil Type Convolution Inequalities in Lorentz Spaces

被引:0
|
作者
Jain, Pankaj [1 ]
Jain, Sandhya [2 ]
机构
[1] South Asian Univ, Dept Math, Akbar Bhawan, New Delhi 110021, India
[2] Univ Delhi, Vivekananda Coll, Dept Math, Vihar 110095, Delhi, India
关键词
Lorentz spaces; Convolution; Weighted inequalities; Mixed norm; REARRANGEMENTS; OPERATORS;
D O I
10.1007/s40010-015-0258-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A refinement of O'Neil inequality has been given by improving the constant in the inequality. This inequality has been generalized for Lorentz spaces with general weights as well as for the two dimensional Lorentz spaces.
引用
收藏
页码:267 / 271
页数:5
相关论文
共 50 条
  • [21] Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces
    Nursultanov, Erlan
    Tikhonov, Sergey
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [22] Interpolation inequalities in function spaces of Sobolev-Lorentz type
    Byeon, Jaeseong
    Kim, Hyunseok
    Oh, Jisu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (02)
  • [23] BURKHOLDER'S INEQUALITIES IN NONCOMMUTATIVE LORENTZ SPACES
    Yong Jiao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (07) : 2431 - 2441
  • [24] Recent developments in the theory of Lorentz spaces and weighted inequalities
    Carro, Maria J.
    Raposo, Jose A.
    Soria, Javier
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 187 (877) : IX - +
  • [25] Refined Sobolev Inequalities in Lorentz Spaces
    Hajer Bahouri
    Albert Cohen
    Journal of Fourier Analysis and Applications, 2011, 17 : 662 - 673
  • [26] Refined Sobolev Inequalities in Lorentz Spaces
    Bahouri, Hajer
    Cohen, Albert
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (04) : 662 - 673
  • [27] Convolution Inequalities in lp Weighted Spaces
    Nguyen Du Vi Nhan
    Dinh Thanh Duc
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 355 - 367
  • [28] Hardy-type inequalities on strong and weak Orlicz-Lorentz spaces
    Li HongLiang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (12) : 2493 - 2505
  • [29] BOHNENBLUST-HILLE INEQUALITIES FOR LORENTZ SPACES VIA INTERPOLATION
    Defant, Andreas
    Mastylo, Mieczyslaw
    ANALYSIS & PDE, 2016, 9 (05): : 1235 - 1258
  • [30] A note on Sobolev inequalities and limits of Lorentz spaces
    Martin, Joaquim
    Milman, Mario
    INTERPOLATION THEORY AND APPLICATIONS, 2007, 445 : 237 - +