O'Neil Type Convolution Inequalities in Lorentz Spaces

被引:0
|
作者
Jain, Pankaj [1 ]
Jain, Sandhya [2 ]
机构
[1] South Asian Univ, Dept Math, Akbar Bhawan, New Delhi 110021, India
[2] Univ Delhi, Vivekananda Coll, Dept Math, Vihar 110095, Delhi, India
关键词
Lorentz spaces; Convolution; Weighted inequalities; Mixed norm; REARRANGEMENTS; OPERATORS;
D O I
10.1007/s40010-015-0258-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A refinement of O'Neil inequality has been given by improving the constant in the inequality. This inequality has been generalized for Lorentz spaces with general weights as well as for the two dimensional Lorentz spaces.
引用
收藏
页码:267 / 271
页数:5
相关论文
共 50 条
  • [1] O’Neil Type Convolution Inequalities in Lorentz Spaces
    Pankaj Jain
    Sandhya Jain
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2016, 86 : 267 - 271
  • [2] O'NEIL-TYPE INEQUALITIES FOR CONVOLUTIONS IN ANISOTROPIC LORENTZ SPACES
    Tleukhanova, N. T.
    Sadykova, K. K.
    EURASIAN MATHEMATICAL JOURNAL, 2019, 10 (03): : 68 - 83
  • [3] Convolution Inequalities in Lorentz Spaces
    Nursultanov, Erlan
    Tikhonov, Sergey
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (03) : 486 - 505
  • [4] Convolution Inequalities in Lorentz Spaces
    Erlan Nursultanov
    Sergey Tikhonov
    Journal of Fourier Analysis and Applications, 2011, 17 : 486 - 505
  • [5] CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES
    Krepela, Martin
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1201 - 1223
  • [6] CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES: CASE 0 < q < 1
    Krepela, Martin
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 191 - 201
  • [7] CONVOLUTION IN WEIGHTED LORENTZ SPACES OF TYPE Γ
    Krepela, Martin
    MATHEMATICA SCANDINAVICA, 2016, 119 (01) : 113 - 132
  • [8] Moser-type inequalities in Lorentz spaces
    Alvino, A
    Ferone, V
    Trombetti, G
    POTENTIAL ANALYSIS, 1996, 5 (03) : 273 - 299
  • [9] Holder type inequalities in Lorentz spaces
    Kolyada, Viktor
    Soria, Javier
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (03) : 523 - 538
  • [10] Optimal Sobolev Type Inequalities in Lorentz Spaces
    Daniele Cassani
    Bernhard Ruf
    Cristina Tarsi
    Potential Analysis, 2013, 39 : 265 - 285