Entire spacelike hypersurfaces with constant σk curvature in Minkowski space

被引:0
作者
Wang, Zhizhang [1 ]
Xiao, Ling [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
上海市自然科学基金;
关键词
MEAN-CURVATURE; DIRICHLET PROBLEM; SCALAR CURVATURE; GAUSS CURVATURE; EQUATIONS;
D O I
10.1007/s00208-021-02317-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of smooth, entire, strictly convex, spacelike, constant sigma(k) curvature hypersurfaces with prescribed lightlike directions in Minkowski space. This is equivalent to prove the existence of smooth, entire, strictly convex, spacelike, constant sigma(k) curvature hypersurfaces with prescribed Gauss map image. We also show that there doesn't exist any entire, convex, strictly spacelike, constant sigma(k) curvature hypersurfaces. Moreover, we generalize the result in Ren et al. (Entire spacelike hypersufaces with constant sigma(n-1) curvature in Minkowski space. Preprint, arXiv:2005.06109) and construct strictly convex, spacelike, constant sigma(k) curvature hypersurface with bounded principal curvature, whose image of the Gauss map is the unit ball.
引用
收藏
页码:1279 / 1322
页数:44
相关论文
共 21 条
[1]  
Aiyama R., 1992, TSUKUBA J MATH, V16, P353
[2]   DIFFERENTIABILITY PROPERTIES OF SYMMETRIC AND ISOTROPIC FUNCTIONS [J].
BALL, JM .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (03) :699-728
[3]   Entire spacelike hypersurfaces of prescribed scalar curvature in Minkowski space [J].
Bayard, P .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (02) :245-264
[4]  
Bayard P, 2009, METHODS APPL ANAL, V16, P87
[5]   Entire spacelike hypersurfaces of constant Gauss curvature in Minkowski space [J].
Bayard, Pierre ;
Schnuerer, Oliver C. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 627 :1-29
[6]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[7]   A constant rank theorem for solutions of fully nonlinear elliptic equations [J].
Caffarelli, Luis ;
Guan, Pengfei ;
Ma, Xi-Nan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (12) :1769-1791
[8]  
Cheeger Je., 1971, Journal of Di erential Geometry, V6, P119
[9]  
CHOI HOI, 1990, J DIFFER GEOM, V32, P775
[10]  
Gilbarg D., 1983, Elliptic partial differential equations of second order