Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data

被引:33
作者
Schilbert, Hanna Marie [1 ,2 ]
Rempel, Andreas [1 ,2 ,3 ]
Pucker, Boas [1 ,2 ,4 ]
机构
[1] Bielefeld Univ, Genet & Genom Plants, CeBiTec, D-33615 Bielefeld, Germany
[2] Bielefeld Univ, Fac Biol, D-33615 Bielefeld, Germany
[3] Bielefeld Univ, Grad Sch DILS, Bielefeld Inst Bioinformat Infrastruct BIBI, Fac Technol, D-33615 Bielefeld, Germany
[4] Ruhr Univ Bochum, Mol Genet & Physiol Plants, Fac Biol & Biotechnol, D-44801 Bochum, Germany
来源
PLANTS-BASEL | 2020年 / 9卷 / 04期
关键词
Single Nucleotide Variants (SNVs); Single Nucleotide Polymorphisms (SNPs); Insertions/Deletions (InDels); population genomics; re-sequencing; mapper; benchmarking; Next Generation Sequencing (NGS); bioinformatics; plant genomics; GENOME ANALYSIS; ALIGNMENT; SEQUENCE; DISCOVERY; FRAMEWORK; ACCURATE;
D O I
10.3390/plants9040439
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
High-throughput sequencing technologies have rapidly developed during the past years and have become an essential tool in plant sciences. However, the analysis of genomic data remains challenging and relies mostly on the performance of automatic pipelines. Frequently applied pipelines involve the alignment of sequence reads against a reference sequence and the identification of sequence variants. Since most benchmarking studies of bioinformatics tools for this purpose have been conducted on human datasets, there is a lack of benchmarking studies in plant sciences. In this study, we evaluated the performance of 50 different variant calling pipelines, including five read mappers and ten variant callers, on six real plant datasets of the model organism Arabidopsis thaliana. Sets of variants were evaluated based on various parameters including sensitivity and specificity. We found that all investigated tools are suitable for analysis of NGS data in plant research. When looking at different performance metrics, BWA-MEM and Novoalign were the best mappers and GATK returned the best results in the variant calling step.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Genome sequencing reveals agronomically important loci in rice using MutMap [J].
Abe, Akira ;
Kosugi, Shunichi ;
Yoshida, Kentaro ;
Natsume, Satoshi ;
Takagi, Hiroki ;
Kanzaki, Hiroyuki ;
Matsumura, Hideo ;
Yoshida, Kakoto ;
Mitsuoka, Chikako ;
Tamiru, Muluneh ;
Innan, Hideki ;
Cano, Liliana ;
Kamoun, Sophien ;
Terauchi, Ryohei .
NATURE BIOTECHNOLOGY, 2012, 30 (02) :174-178
[2]  
[Anonymous], 2012, arXiv, DOI DOI 10.48550/ARXIV.1207.3907
[3]  
Baasner J.-S, INFLUENCE NEIGHBORIN
[4]   Comparing the performance of selected variant callers using synthetic data and genome segmentation [J].
Bian, Xiaopeng ;
Zhu, Bin ;
Wang, Mingyi ;
Hu, Ying ;
Chen, Qingrong ;
Nguyen, Cu ;
Hicks, Belynda ;
Meerzaman, Daoud .
BMC BIOINFORMATICS, 2018, 19
[5]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[6]  
Claros Manuel Gonzalo, 2012, Biology (Basel), V1, P439, DOI 10.3390/biology1020439
[7]   NGSQC: cross-platform quality analysis pipeline for deep sequencing data [J].
Dai, Manhong ;
Thompson, Robert C. ;
Maher, Christopher ;
Contreras-Galindo, Rafael ;
Kaplan, Mark H. ;
Markovitz, David M. ;
Omenn, Gil ;
Meng, Fan .
BMC GENOMICS, 2010, 11
[8]   Large-scale polymorphism of heterochromatic repeats in the DNA of Arabidopsis thaliana [J].
Davison, Jerry ;
Tyagi, Anand ;
Comai, Luca .
BMC PLANT BIOLOGY, 2007, 7 (1)
[9]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+
[10]   Assessing the Effect of Sequencing Depth and Sample Size in Population Genetics Inferences [J].
Fumagalli, Matteo .
PLOS ONE, 2013, 8 (11)