An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems

被引:72
作者
Wang, Ling [1 ]
Xu, Ye [1 ]
机构
[1] Tsinghua Univ, Dept Automat, TNList, Beijing 100084, Peoples R China
关键词
Parameter estimation; Chaotic systems; Biogeography-based optimization; Hybrid algorithm; DIFFERENTIAL EVOLUTION; GLOBAL OPTIMIZATION; SYNCHRONIZATION; IDENTIFICATION; SWARM;
D O I
10.1016/j.eswa.2011.05.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parameter estimation of chaotic systems is an important issue in the fields of computational mathematics and nonlinear science, which has gained increasing research and applications. In this paper, biogeography-based optimization (BBO), a new effective optimization algorithm based on the biogeography theory of the geographical distribution of biological organisms, is reasonably combined with differential evolution and simplex search to develop an effective hybrid algorithm for solving parameter estimation problem that is formulated as a multi-dimensional optimization problem. By suitably fusing several optimization methods with different searching mechanisms and features, the exploration and exploitation abilities of the hybrid algorithm can be enhanced and well balanced. Numerical simulation based on several typical chaotic systems and comparisons with some existing methods demonstrate the effectiveness of the proposed algorithm. In addition, the effects of population size and noise on the performances of the hybrid algorithm are investigated. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:15103 / 15109
页数:7
相关论文
共 15 条
  • [1] Parameter identification of chaotic systems using evolutionary programming approach
    Chang, Jen-Fuh
    Yang, Yi-Sung
    Liao, Teh-Lu
    Yan, Jun-Juh
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (04) : 2074 - 2079
  • [2] An approach of parameter estimation for a chaotic system based on genetic algorithm
    Dai, D
    Ma, XK
    Li, FC
    You, Y
    [J]. ACTA PHYSICA SINICA, 2002, 51 (11) : 2459 - 2462
  • [3] Global synchronization criterion and adaptive synchronization for new chaotic system
    Elabbasy, EM
    Agiza, HN
    El-Dessoky, MM
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (04) : 1299 - 1309
  • [4] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661
  • [5] Parameters identification of chaotic systems via chaotic ant swarm
    Li, LX
    Yang, YX
    Peng, HP
    Wang, XD
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 28 (05) : 1204 - 1211
  • [6] A SIMPLEX-METHOD FOR FUNCTION MINIMIZATION
    NELDER, JA
    MEAD, R
    [J]. COMPUTER JOURNAL, 1965, 7 (04) : 308 - 313
  • [7] Differential evolution algorithm-based parameter estimation for chaotic systems
    Peng, Bo
    Liu, Bo
    Zhang, Fu-Yi
    Wang, Ling
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2110 - 2118
  • [8] Parameter estimation of a delay dynamical system using synchronization in presence of noise
    Rakshit, Biswambhar
    Chowdhury, A. Roy
    Saha, Papri
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (04) : 1278 - 1284
  • [9] Biogeography-Based Optimization
    Simon, Dan
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (06) : 702 - 713
  • [10] Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
    Storn, R
    Price, K
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (04) : 341 - 359