LiCrTiO4 Nanowires with the (111) Peak Evolution during High-Performance Lithium Ion Battery Anodes

被引:20
|
作者
Luo, Minghe [1 ]
Yu, Haoxiang [1 ]
Cheng, Xing [1 ]
Zhu, Haojie [1 ]
Ye, Wuquan [1 ]
Yan, Lei [1 ]
Qian, Shangshu [1 ]
Shui, Miao [1 ]
Shu, Jie [1 ]
机构
[1] Ningbo Univ, Fac Mat Sci & Chem Engn, 818 Fenghua Rd, Ningbo 315211, Zhejiang, Peoples R China
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2017年 / 5卷 / 11期
基金
中国国家自然科学基金;
关键词
Lithium chromium titanate; Nanowires; Electrospun; Structural evolution; In situ X-ray diffraction; Lithium ion batteries; IN-SITU; ELECTRODE MATERIAL; ELECTROCHEMICAL PROPERTIES; NANOSTRUCTURED MATERIALS; STORAGE BEHAVIOR; SODIUM TITANATE; SPINEL LICRTIO4; LI4TI5O12; COMPOSITE; CAPABILITY;
D O I
10.1021/acssuschemeng.7b02567
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
LiCrTiO4 is a lithium insertion material that is isostructural with Li4Ti5O12. Upon modification of its morphology, LiCrTiO4 nanowires exhibit a high charge capacity of 154.6 mA h g(-1) at 100 mA g(-1), and this value can be maintained at 121.0 mA h even at a high current density of 700 mA g(-1). Furthermore, the cycling performance shows that LiCrTiO4 nanowires can also deliver a reversible capacity of 120.0 mA h g(-1) with 95.6% capacity retention of the first cycle after 550 cycles. The excellent electrochemical properties were revalidated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The most interesting feature in this work is the relationship between the periodic variation of the (111) peak intensities and the migration of lithium ions during cycling. This proves that LiCrTiO4 nanowires are a zero-strain insertion material that can be a promising anode material for lithium ion batteries.
引用
收藏
页码:10580 / 10587
页数:8
相关论文
共 50 条
  • [1] High Pressure Rapid Synthesis of LiCrTiO4 with Oxygen Vacancy for High Rate Lithium-Ion Battery Anodes
    Yan, Lv
    Qin, Jieming
    Liang, Benkuan
    Gao, Shanlin
    Wang, Bo
    Cui, Jiuyue
    Bolag, Altan
    Yang, Yanchun
    SMALL, 2022, 18 (35)
  • [2] LiCrTiO4: A High-Performance Insertion Anode for Lithium-Ion Batteries
    Aravindan, Vanchiappan
    Ling, Wong Chui
    Madhavi, Srinivasan
    CHEMPHYSCHEM, 2012, 13 (14) : 3263 - 3266
  • [3] LiCrTiO4 Nanowires as High-Performance Cathodes for Magnesium-Lithium Hybrid Batteries
    Zhu, Caixia
    Tang, Yakun
    Liu, Lang
    Li, Xiaohui
    Gao, Yang
    NuLi, Yanna
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (17): : 14539 - 14544
  • [4] Spinel LiCrTiO4 fibers as an advanced anode material in high performance lithium ion batteries
    Wang, Li
    Xiao, Qizhen
    Wu, Lijuan
    Lei, Gangtie
    Li, Zhaohui
    SOLID STATE IONICS, 2013, 236 : 43 - 47
  • [5] Novel silicon/copper nanowires as high-performance anodes for lithium ion batteries
    Hong, Juan
    Cheng, Kun
    Xu, Guiyin
    Stapelberg, Myles
    Kuai, Yuan
    Sun, Pengcheng
    Qu, Subing
    Zhang, Zexin
    Geng, Qidong
    Wu, Zhuangzhao
    Zhu, Meifang
    Braun, Paul V.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 875
  • [6] Hybrid Cellular Nanosheets for High-Performance Lithium-Ion Battery Anodes
    Yu, Seung-Ho
    Lee, Dong Jun
    Park, Mihyun
    Kwon, Soon Gu
    Lee, Hyeon Seok
    Jin, Aihua
    Lee, Kug-Seung
    Lee, Ji Eun
    Oh, Myoung Hwan
    Kang, Kisuk
    Sung, Yung-Eun
    Hyeon, Taeghwan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (37) : 11954 - 11961
  • [7] Hybridized cobalt/manganese vanadates as high-performance anodes in lithium ion battery
    Xia, Dawei
    Yang, Jian
    Li, Mingqian
    Gao, Hongpeng
    Gong, Feng
    MATERIALS LETTERS, 2021, 283
  • [8] Si-CNT/rGO Nanoheterostructures as High-Performance Lithium-Ion-Battery Anodes
    Xiao, Lisong
    Sehlleier, Yee Hwa
    Dobrowolny, Sascha
    Orthner, Hans
    Mahlendorf, Falko
    Heinzel, Angelika
    Schulz, Christof
    Wiggers, Hartmut
    CHEMELECTROCHEM, 2015, 2 (12): : 1983 - 1990
  • [9] Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery
    Li, Haojie
    Su, Qingmei
    Kang, Jinwei
    Huang, Min
    Feng, Miao
    Feng, Huagui
    Huang, Ping
    Du, Gaohui
    MATERIALS LETTERS, 2018, 217 : 276 - 280
  • [10] Electrophoretic Deposition of Tin Sulfide Nanocubes as High-Performance Lithium-Ion Battery Anodes
    Bree, Gerard
    Geaney, Hugh
    Ryan, Kevin M.
    CHEMELECTROCHEM, 2019, 6 (12): : 3049 - 3056