Coherent virtual absorption based on complex zero excitation for ideal light capturing

被引:90
作者
Baranov, Denis G. [1 ,2 ,3 ]
Krasnok, Alex [4 ]
Alu, Andrea [4 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[3] ITMO Univ, St Petersburg 197101, Russia
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
来源
OPTICA | 2017年 / 4卷 / 12期
关键词
Interference; Nanophotonics and photonic crystals; Resonance; Scattering;
D O I
10.1364/OPTICA.4.001457
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Absorption of light is directly associated with dissipative processes in a material. In suitably tailored resonators, a specific level of dissipation can support coherent perfect absorption, the time-reversed analogue of lasing, which enables total absorption and zero scattering in open cavities. On the contrary, the scattering zeros of lossless objects strictly occur at complex frequencies. While usually considered nonphysical due to their divergent response in time, these zeros play a crucial role in the overall scattering dispersion. Here, we introduce the concept of coherent virtual absorption, accessing these modes by temporally shaping the incident waveform. We show that engaging these complex zeros enables storing and releasing the electromagnetic energy at will within a lossless structure for arbitrary amounts of time, under the control of the impinging field. The effect is robust with respect to inevitable material dissipation and can be realized in systems with any number of input ports. The observed effect may have important implications for flexible control of light propagation and storage, low-energy memory, and optical modulation. (c) 2017 Optical Society of America
引用
收藏
页码:1457 / 1461
页数:5
相关论文
共 24 条
[1]   Coherent perfect absorbers: linear control of light with light [J].
Baranov, Denis G. ;
Krasnok, Alex ;
Shegai, Timur ;
Alu, Andrea ;
Chong, Yidong .
NATURE REVIEWS MATERIALS, 2017, 2 (12)
[2]   Theory of the time reversal cavity for electromagnetic fields [J].
Carminati, R. ;
Pierrat, R. ;
de Rosny, J. ;
Fink, M. .
OPTICS LETTERS, 2007, 32 (21) :3107-3109
[3]   Ultrafast All-Optical Switching [J].
Chai, Zhen ;
Hu, Xiaoyong ;
Wang, Feifan ;
Niu, Xinxiang ;
Xie, Jingya ;
Gong, Qihuang .
ADVANCED OPTICAL MATERIALS, 2017, 5 (07)
[4]   Coherent Perfect Absorbers: Time-Reversed Lasers [J].
Chong, Y. D. ;
Ge, Li ;
Cao, Hui ;
Stone, A. D. .
PHYSICAL REVIEW LETTERS, 2010, 105 (05)
[5]  
Fan SH, 2003, J OPT SOC AM A, V20, P569, DOI 10.1364/JOSAA.20.000569
[6]   Measurement of bound states in the continuum by a detector embedded in a photonic crystal [J].
Gansch, Roman ;
Kalchmair, Stefan ;
Genevet, Patrice ;
Zederbauer, Tobias ;
Detz, Hermann ;
Andrews, Aaron M. ;
Schrenk, Werner ;
Capasso, Federico ;
Loncar, Marko ;
Strasser, Gottfried .
LIGHT-SCIENCE & APPLICATIONS, 2016, 5 :e16147-e16147
[7]   Singular analysis of Fano resonances in plasmonic nanostructures [J].
Grigoriev, V. ;
Varault, S. ;
Boudarham, G. ;
Stout, B. ;
Wenger, J. ;
Bonod, N. .
PHYSICAL REVIEW A, 2013, 88 (06)
[8]   Optimization of resonant effects in nanostructures via Weierstrass factorization [J].
Grigoriev, V. ;
Tahri, A. ;
Varault, S. ;
Rolly, B. ;
Stout, B. ;
Wenger, J. ;
Bonod, N. .
PHYSICAL REVIEW A, 2013, 88 (01)
[9]   Ultrahigh optical Q factors of crystalline resonators in the linear regime [J].
Grudinin, Ivan S. ;
Ilchenko, Vladimir S. ;
Maleki, Lute .
PHYSICAL REVIEW A, 2006, 74 (06)
[10]  
Haus H. A., 1984, WAVES FIELDS OPTOELE