On a relation of the angular frequency to the Aharonov-Casher geometric phase in a quantum dot

被引:5
作者
Barboza, P. M. T. [1 ]
Bakke, K. [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Aharonov-Casher effect; Geometric quantum phases; Quantum dot; Persistent spin current; Linear plus Coulomb-type potential; Biconfluent Heun function; COULOMB TYPE POTENTIALS; SPIN-ORBIT INTERACTION; DIRAC-EQUATION; SCHRODINGER-EQUATION; PERSISTENT CURRENTS; LANDAU QUANTIZATION; MAGNETIC-FLUX; ANANDAN PHASE; BOUND-STATES; SPECTRUM;
D O I
10.1016/j.aop.2016.06.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By analysing the behaviour of a neutral particle with permanent magnetic dipole moment confined to a quantum dot in the presence of a radial electric field, Coulomb-type and linear confining potentials, then, an Aharonov-Bohm-type effect for bound states and a dependence of the angular frequency of the system on the Aharonov-Casher geometric phase and the quantum numbers associated with the radial modes, the angular momentum and the spin are obtained. In particular, the possible values of the angular frequency and the persistent spin currents associated with the ground state are investigated in two different cases. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:457 / 467
页数:11
相关论文
共 86 条