Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata

被引:28
作者
Yu, Xinliang [1 ,2 ]
机构
[1] Hunan Inst Engn, Coll Mat & Chem Engn, Hunan Prov Key Lab Environm Catalysis & Waste Reg, Xiangtan 411104, Hunan, Peoples R China
[2] Donghu Rd 18, Xiangtan 411104, Hunan, Peoples R China
关键词
Pseudokirchneriella subcapitata; quantitative structure-toxicity relationship; support vector machine; toxicity; TETRAHYMENA-PYRIFORMIS; AQUATIC ORGANISMS; QSAR; PREDICTION; PRIORITIZATION; DESCRIPTORS; DERIVATIVES; ERROR; QSTR;
D O I
10.1016/j.aquatox.2020.105496
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Predicting the toxicity of organic toxicants to aquatic life through chemometric approach is challenging area. In this paper, a six-descriptor quantitative structure-activity/toxicity relationship (QSAR/QSTR) model was successfully developed for the toxicity pEC(10) of organic chemicals against Pseudokirchneriella subcapitata, by applying support vector machine (SVM) together with genetic algorithm. A sufficiently large data set consisting of 334 organic chemicals was randomly divided into a training set (167 compounds) and a WA set (167 compounds) with a ratio of 1:1. The optimal SVM model possesses coefficient of determination R-2 of 0.76 and mean absolute error (MAE) of 0.60 for the training set and R-2 of 0.75 and MAE of 0.61 for the WA set. Compared with other models reported in the literature, our SVM model for the toxicity pEC(10) shows significant statistical quality and satisfactory predictive ability, although it has fewer molecular descriptors and more samples in the WA set. A QSTR model for pEC(50) of organic chemicals against Pseudokirchneriella subcapitata was also developed with the same subsets and molecular descriptors.
引用
收藏
页数:7
相关论文
共 30 条
[1]  
[Anonymous], TSCA CHEM SUBST INV
[2]   Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata [J].
Aruoja, Villem ;
Moosus, Maikki ;
Kahru, Anne ;
Sihtmaee, Mariliis ;
Maran, Uko .
CHEMOSPHERE, 2014, 96 :23-32
[3]   Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: Comparison with published data and QSARs [J].
Aruoja, Villem ;
Sihtmaee, Mariliis ;
Dubourguier, Henri-Charles ;
Kahru, Anne .
CHEMOSPHERE, 2011, 84 (10) :1310-1320
[4]   QSAR study of the toxicity of nitrobenzenes to Tetrahymena pyriformis using quantum chemical descriptors [J].
Bellifa, Khadidja ;
Mekelleche, Sidi Mohamed .
ARABIAN JOURNAL OF CHEMISTRY, 2016, 9 :S1683-S1689
[5]  
CambridgeSoft Inc, 2004, CHEMOFFICE ULTR 8 0
[6]   Evaluation of CADASTER QSAR Models for the Aquatic Toxicity of (Benzo)triazoles and Prioritisation by Consensus Prediction [J].
Cassani, Stefano ;
Kovarich, Simona ;
Papa, Ester ;
Roy, Partha Pratim ;
Rahmberg, Magnus ;
Nilsson, Sara ;
Sahlin, Ullrika ;
Jeliazkova, Nina ;
Kochev, Nikolay ;
Pukalov, Ognyan ;
Tetko, Igor V. ;
Brandmaier, Stefan ;
Durjava, Mojca Kos ;
Kolar, Boris ;
Peijnenburg, Willie ;
Gramatica, Paola .
ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2013, 41 (01) :49-64
[7]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[8]   Toxicity of propargylic alcohols on green alga-Pseudokirchneriella subcapitata [J].
Chen, Chung Yuan ;
Kuo, Kwan-Liang ;
Fan, Je-Wei .
JOURNAL OF ENVIRONMENTAL MONITORING, 2012, 14 (01) :181-186
[9]   Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database [J].
Dieguez-Santana, Karel ;
Hai Pham-The ;
Villegas-Aguilar, Pedro J. ;
Huong Le-Thi-Thu ;
Castillo-Garit, Juan A. ;
Casanola-Martin, Gerardo M. .
CHEMOSPHERE, 2016, 165 :434-441
[10]   Exploring QSAR modeling of toxicity of chemicals on earthworm [J].
Ghosh, Sulekha ;
Ojha, Probir Kumar ;
Carnesecchi, Edoardo ;
Lombardo, Anna ;
Roy, Kunal ;
Benfenati, Emilio .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 190