Flexible maximum likelihood methods for bivariate proportional hazards models

被引:32
|
作者
He, WQ
Lawless, JF
机构
[1] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
关键词
Clayton model; copula; Cox model; efficiency; multivariate lifetimes; piecewise constant hazards; robustness; spline functions;
D O I
10.1111/j.0006-341X.2003.00098.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents methodology for multivariate proportional hazards (PH) regression models. The methods employ flexible piecewise constant or spline specifications for baseline hazard functions in either marginal or conditional PH models, along with assumptions about the association among lifetimes. Because the models are parametric, ordinary maximum likelihood can be applied; it is able to deal easily with such data features as interval censoring or sequentially observed lifetimes, unlike existing semiparametric methods. A bivariate Clayton model (1978, Biometrika 65, 141-151) is used to illustrate the approach taken. Because a parametric assumption about association is made, efficiency and robustness comparisons are made between estimation based on the bivariate Clayton model and "working independence" methods that specify only marginal distributions for each lifetime variable.
引用
收藏
页码:837 / 848
页数:12
相关论文
共 50 条
  • [41] Dependence properties of bivariate distributions with proportional (reversed) hazards marginals
    Dolati, A.
    Amini, M.
    Mirhosseini, S. M.
    METRIKA, 2014, 77 (03) : 333 - 347
  • [42] Dependence properties of bivariate distributions with proportional (reversed) hazards marginals
    A. Dolati
    M. Amini
    S. M. Mirhosseini
    Metrika, 2014, 77 : 333 - 347
  • [43] LOCAL FULL LIKELIHOOD ESTIMATION FOR THE PROPORTIONAL HAZARDS MODEL
    GENTLEMAN, R
    CROWLEY, J
    BIOMETRICS, 1991, 47 (04) : 1283 - 1296
  • [44] Inference in the presence of likelihood monotonicity for proportional hazards regression
    Kolassa, John E. E.
    Zhang, Juan
    STATISTICA NEERLANDICA, 2023, 77 (03) : 322 - 339
  • [45] Local partial likelihood estimation in proportional hazards regression
    Chen, Songnian
    Zhou, Lingzhi
    ANNALS OF STATISTICS, 2007, 35 (02): : 888 - 916
  • [46] Maximum likelihood estimation in the proportional odds model
    Murphy, SA
    Rossini, AJ
    vanderVaart, AW
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 968 - 976
  • [47] On the maximum penalized likelihood approach for proportional hazard models with right censored survival data
    Ma, Jun
    Heritier, Stephane
    Lo, Serigne N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 142 - 156
  • [48] Particle methods for maximum likelihood estimation in latent variable models
    Adam M. Johansen
    Arnaud Doucet
    Manuel Davy
    Statistics and Computing, 2008, 18 : 47 - 57
  • [49] PSEUDO MAXIMUM-LIKELIHOOD METHODS - APPLICATIONS TO POISSON MODELS
    GOURIEROUX, C
    MONFORT, A
    TROGNON, A
    ECONOMETRICA, 1984, 52 (03) : 701 - 720
  • [50] Maximum likelihood methods for cure rate models with missing covariates
    Chen, MH
    Ibrahim, JG
    BIOMETRICS, 2001, 57 (01) : 43 - 52