Purpose Here, the present paper characteristics flow and heat transfer of non-Newtonian nanofluid over a stretching sheet. Energy expression is modeled subject to slip factor phenomenon. Consideration of chemical reaction characterizes the mass transfer mechanism. Design/methodology/approach The use of transformation variables reduces the PDEs into non-linear ODEs. The obtained nonlinear complex problems are computed numerically through RKF-45 technique. The effects of the different physical parameters on the temperature and concentration distribution are analyzed. Findings The nature of the reduced Nusselt number, reduced Sherwood number and skin friction coefficient also described as a function of different parameters arising in the problem. It is found that the rate of mass transfer enhances for enhancing values Brownian motion parameter and thermophoresis parameter. Originality/value The nature of the reduced Nusselt number, reduced Sherwood number and skin friction coefficient also described as a function of different parameters arising in the problem. It is found that, the rate of mass transfer enhances for enhancing values Brownian motion parameter and thermophoresis parameter.
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi ArabiaUniv Faisalabad, Dept Math, Faisalabad, Pakistan