Lecture Notes On Differential Calculus on RCD Spaces

被引:37
作者
Gigli, Nicola [1 ]
机构
[1] Scuola Int Super Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
关键词
Metric measure spaces; RCD spaces; differential calculus; Ricci curvature; METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; RICCI CURVATURE; SOBOLEV SPACES; LIPSCHITZ FUNCTIONS; VECTOR-FIELDS; HEAT-FLOW; TRANSPORT; STABILITY; CONVERGENCE;
D O I
10.4171/PRIMS/54-4-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes are intended to be an invitation to differential calculus on RCD spaces. We start by introducing the concept of an "L-2 -normed L-infinity-module" and show how it can be used to develop a first-order (Sobolev) differential calculus on general metric measure spaces. In the second part of the manuscript we see how, on spaces with Ricci curvature bounded from below, a second-order calculus can also be built: objects like the Hessian, covariant and exterior derivatives and Ricci curvature are all well defined and have many of the properties they have in the smooth category.
引用
收藏
页码:855 / 918
页数:64
相关论文
共 48 条
[21]   From volume cone to metric cone in the nonsmooth setting [J].
De Philippis, Guido ;
Gigli, Nicola .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (06) :1526-1587
[22]  
Diestel J., 1977, MATH SURVEYS, V15
[23]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[24]   On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces [J].
Erbar, Matthias ;
Kuwada, Kazumasa ;
Sturm, Karl-Theodor .
INVENTIONES MATHEMATICAE, 2015, 201 (03) :993-1071
[25]  
Gigli E., IN PRESS
[26]  
GIGLI N., Commun. Anal. Geom.
[27]  
Gigli N., MEM AM MATH SOC, V251
[28]  
Gigli N., 2013, ARXIV13025555
[29]  
Gigli N., 2015, MEM AM MATH SOC, V236
[30]   Second order differentiation formula on RCD(K, N) spaces [J].
Gigli, Nicola ;
Tamanini, Luca .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (02) :377-386