Cauchy problem and vanishing dispersion limit for Schrodinger-improved Boussinesq equations

被引:3
作者
Fan, Jishan [1 ]
Ozawa, Tohru [2 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
[2] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
Schrodinger; Improved Boussinesq; Well-posedness; WELL-POSEDNESS; EXISTENCE;
D O I
10.1016/j.jmaa.2020.123857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem and vanishing dispersion limit of the Schrodinger- improved Boussinesq equations in R-n. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:7
相关论文
共 13 条
[1]   Well-posedness for the Schrodinger-improved Boussinesq system and related bilinear estimates [J].
Akahori, Takafumi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (03) :469-489
[2]  
[Anonymous], HOKKAIDO MATH J
[3]  
[Anonymous], COMMENT MATH U CAROL
[4]  
[Anonymous], 2007, ADV STUDIES PURE MAT, DOI DOI 10.2969/ASPM/04710291
[5]   Global existence on nonlinear Schrodinger-IMBq equations [J].
Cho, Yonggeun ;
Ozawa, Tohru .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (03) :535-552
[6]   Well-posedness and orbital stability of traveling waves for the Schrodinger-improved Boussinesq system [J].
Esfahani, Amin ;
Pastor, Ademir .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :206-218
[7]  
Guo B., 2016, ZAKHAROV SYSTEM ITS, DOI 10.1007/978-981-10-2582-2
[8]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[9]   EXISTENCE AND SMOOTHING EFFECT OF SOLUTIONS FOR THE ZAKHAROV EQUATIONS [J].
OZAWA, T ;
TSUTSUMI, Y .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1992, 28 (03) :329-361
[10]   The Cauchy problem for the generalized IMBq equation in Ws.p (Rn) [J].
Wang, SB ;
Chen, GW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (01) :38-54