Remote Toehold: A Mechanism for Flexible Control of DNA Hybridization Kinetics

被引:251
作者
Genot, Anthony J. [1 ]
Zhang, David Yu [2 ]
Bath, Jonathan [1 ]
Turberfield, Andrew J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[2] CALTECH, Pasadena, CA 91125 USA
基金
英国工程与自然科学研究理事会;
关键词
LOGIC GATES; INCLUDING PSEUDOKNOTS; CIRCUITS; ALGORITHM; SUBSTRATE; MACHINE; STRANDS; DESIGN;
D O I
10.1021/ja1073239
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hybridization of DNA strands can be used to build molecular devices, and control of the kinetics of DNA hybridization is a crucial element in the design and construction of functional and autonomous devices. Toehold-mediated strand displacement has proved to be a powerful mechanism that allows programmable control of DNA hybridization. So far, attempts to control hybridization kinetics have mainly focused on the length and binding strength of toehold sequences. Here we show that insertion of a spacer between the toehold and displacement domains provides additional control: modulation of the nature and length of the spacer can be used to control strand-displacement rates over at least 3 orders of magnitude. We apply this mechanism to operate displacement reactions in potentially useful kinetic regimes: the kinetic proofreading and concentration-robust regimes.
引用
收藏
页码:2177 / 2182
页数:6
相关论文
共 45 条
  • [1] Self-assembly of a nanoscale DNA box with a controllable lid
    Andersen, Ebbe S.
    Dong, Mingdong
    Nielsen, Morten M.
    Jahn, Kasper
    Subramani, Ramesh
    Mamdouh, Wael
    Golas, Monika M.
    Sander, Bjoern
    Stark, Holger
    Oliveira, Cristiano L. P.
    Pedersen, Jan Skov
    Birkedal, Victoria
    Besenbacher, Flemming
    Gothelf, Kurt V.
    Kjems, Jorgen
    [J]. NATURE, 2009, 459 (7243) : 73 - U75
  • [2] DNA nanomachines
    Bath, Jonathan
    Turberfield, Andrew J.
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (05) : 275 - 284
  • [3] Biocomputers: from test tubes to live cells
    Benenson, Yaakov
    [J]. MOLECULAR BIOSYSTEMS, 2009, 5 (07) : 675 - 685
  • [4] Topological constraints in nucleic acid hybridization kinetics
    Bois, JS
    Venkataraman, S
    Choi, HM
    Spakowitz, AJ
    Wang, ZG
    Pierce, NA
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 (13) : 4090 - 4095
  • [5] A partition function algorithm for nucleic acid secondary structure including pseudoknots
    Dirks, RM
    Pierce, NA
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (13) : 1664 - 1677
  • [6] An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots
    Dirks, RM
    Pierce, NA
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (10) : 1295 - 1304
  • [7] Thermodynamic analysis of interacting nucleic acid strands
    Dirks, Robert M.
    Bois, Justin S.
    Schaeffer, Joseph M.
    Winfree, Erik
    Pierce, Niles A.
    [J]. SIAM REVIEW, 2007, 49 (01) : 65 - 88
  • [8] A DNA-based machine that can cyclically bind and release thrombin
    Dittmer, WU
    Reuter, A
    Simmel, FC
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (27) : 3550 - 3553
  • [9] Elbaz J, 2010, NAT NANOTECHNOL, V5, P417, DOI [10.1038/nnano.2010.88, 10.1038/NNANO.2010.88]
  • [10] Modular multi-level circuits from immobilized DNA-Based logic gates
    Frezza, Brian M.
    Cockroft, Scott L.
    Ghadiri, M. Reza
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (48) : 14875 - 14879