Large differences between consecutive primes

被引:13
作者
Matomaki, Kaisa [1 ]
机构
[1] Univ London, Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1093/qmath/ham021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a sieve method together with mean and large value results for Dirichlet polynomials to prove that [GRAPHICS] where p(n) is the nth prime number.
引用
收藏
页码:489 / 518
页数:30
相关论文
共 15 条
[1]   The difference between consecutive primes [J].
Baker, RC ;
Harman, G .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1996, 72 :261-280
[2]   The difference between consecutive primes, II [J].
Baker, RC ;
Harman, G ;
Pintz, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :532-562
[3]  
BAKER RC, 1997, EXP SUMS APPL NUMBER, P1
[4]   POWER MEAN-VALUES FOR DIRICHLET POLYNOMIALS AND THE RIEMANN ZETA-FUNCTION .2. [J].
DESHOUILLERS, JM ;
IWANIEC, H .
ACTA ARITHMETICA, 1984, 43 (03) :305-312
[5]  
HARMAN G, 1983, J LOND MATH SOC, V27, P9
[6]  
Harman G, 1996, P LOND MATH SOC, V72, P241
[7]   The distribution of prime ideals of imaginary quadratic fields [J].
Harman, G ;
Kumchev, A ;
Lewis, PA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (02) :599-620
[8]  
HARMAN G, PRIME DETECTING SIEV
[9]   PRIME-NUMBERS IN SHORT INTERVALS AND A GENERALIZED VAUGHAN IDENTITY [J].
HEATHBROWN, DR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06) :1365-1377
[10]  
HEATHBROWN DR, 1979, J LOND MATH SOC, V20, P177