Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis

被引:39
|
作者
Yang, Xuanwen [1 ]
He, Kang [1 ,2 ]
Chi, Xiaoyuan [3 ]
Chai, Guohua [1 ]
Wang, Yiping [1 ,2 ]
Jia, Chunlin [4 ]
Zhang, Hongpeng [1 ]
Zhou, Gongke [1 ]
Hu, Ruibo [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biofuels, Shandong Prov Key Lab Energy Genet, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Shandong Peanut Res Inst, Qingdao 266100, Peoples R China
[4] Shandong Inst Agr Sustainable Dev, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Miscanthus lutarioriparius; NAC transcription factor; Abiotic stress; Abscisic acid; DROUGHT TOLERANCE; ABSCISIC-ACID; FUNCTIONAL-ANALYSIS; SALT TOLERANCE; GRAIN-YIELD; ENHANCED DROUGHT; OXIDATIVE STRESS; RICE; WHEAT; OVEREXPRESSION;
D O I
10.1016/j.plantsci.2018.09.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NAC (NAM, ATAF1/2 and CUC2) transcription factors play critical roles in plant abiotic stress responses. However, knowledge regarding the functional roles of NACs in abiotic stress tolerance and its underlying mechanisms is relatively limited in Miscanthus. In this study, we functionally characterized a novel Miscanthus NAC gene MlNAC12 by ectopic expression in Arabidopsis. MlNAC12 was localized in the nucleus. It could specifically binds to the NAC recognition sequence (NACRS) and has a transactivation activity in the C-terminus. Overexpression of MlNAC12 in Arabidopsis conferred hypersensitivity to exogenous Abscisic acid (ABA) at seed germination and root elongation stages. In addition, MlNAC12 overexpression enhanced germination and root growth under salt (NaCl) stress. Furthermore, MlNAC12 overexpression lines exhibited significantly enhanced drought stress tolerance, which was evidenced by a higher survival rate and a lower water loss rate compared to the wild type (WT). Accordingly, the stomata aperture was remarkably reduced in MlNAC12 overexpression lines in comparison to the WT under drought stress. Furthermore, the accumulation of the reactive oxygen species (ROS) and malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities of several antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the transgenic plants. Correspondingly, the expression of six stress-responsive genes was significantly up-regulated in MlNAC12 overexpression lines. Together, our results indicate that MlNAC12 is a positive regulator of drought and salt stress tolerance through activating ROS scavenging enzymes.
引用
收藏
页码:229 / 241
页数:13
相关论文
共 50 条
  • [41] Genome-Wide Investigation of the NAC Transcription Factor Family in Miscanthus sinensis and Expression Analysis Under Various Abiotic Stress
    Nie, Gang
    Yang, Zhongfu
    He, Jie
    Liu, Aiyu
    Chen, Jiayi
    Wang, Shuan
    Wang, Xia
    Feng, Guangyan
    Li, Dandan
    Peng, Yan
    Huang, Linkai
    Zhang, Xinquan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [43] Overexpression of durum wheat NAC transcription factor TtNTL3A promotes early flowering and increases multiple stress tolerance in transgenic Arabidopsis
    Saidi, Mohamed Najib
    Mergby, Dhawya
    Souibgui, Amel
    Yacoubi, Ines
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 192 : 1 - 9
  • [44] The durum wheat NAC transcription factor TtNAC2A enhances drought stress tolerance in Arabidopsis
    Mergby, Dhawya
    Hanin, Moez
    Saidi, Mohammed Najib
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 186
  • [45] The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana
    Ma, Jing
    Wang, Li-yue
    Dai, Jia-xi
    Wang, Ying
    Lin, Duo
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [46] The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana
    Jing Ma
    Li-yue Wang
    Jia-xi Dai
    Ying Wang
    Duo Lin
    BMC Plant Biology, 21
  • [47] Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis
    Mei, Fangming
    Chen, Bin
    Li, Fangfang
    Zhang, Yifang
    Kang, Zhensheng
    Wang, Xiaojing
    Mao, Hude
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 160 : 37 - 50
  • [48] Novel NAC Transcription Factor TaNAC67 Confers Enhanced Multi-Abiotic Stress Tolerances in Arabidopsis
    Mao, Xinguo
    Chen, Shuangshuang
    Li, Ang
    Zhai, Chaochao
    Jing, Ruilian
    PLOS ONE, 2014, 9 (01):
  • [49] Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1
    Guo, Wei-Li
    Chen, Ru-Gang
    Du, Xiao-Hua
    Zhang, Zhen
    Yin, Yan-Xu
    Gong, Zhen-Hui
    Wang, Guang-Yin
    BMC PLANT BIOLOGY, 2014, 14
  • [50] Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis
    Tiwari, Poonam
    Indoliya, Yuvraj
    Chauhan, Abhishek Singh
    Pande, Veena
    Chakrabarty, Debasis
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 206