Analysis on eigenvalues for preconditioning cubic spline collocation method of elliptic equations

被引:0
作者
Kim, SD [1 ]
Lee, YH
机构
[1] Kyungpook Natl Univ, Teachers Coll, Dept Math, Taegu 702701, South Korea
[2] Chonbuk Natl Univ, Dept Math, Chonju, South Korea
关键词
D O I
10.1016/S0024-3795(00)00321-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the work of solving a uniformly elliptic differential equations Au := -Deltau + a(1)u(x) + a(2)u(y) + a(0)u = f in the unit square with boundary conditions by the C-1-cubic spline collocation method, one may need to investigate efficient preconditioning techniques. For this purpose, using the generalized field of values argument, we show the uniform bounds of the eigenvalues of the preconditioned matrix when a full finite element preconditioning is considered. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 12 条
[1]   FAST DIRECT SOLVERS FOR PIECEWISE HERMITE BICUBIC ORTHOGONAL SPLINE COLLOCATION EQUATIONS [J].
BIALECKI, B ;
FAIRWEATHER, G ;
BENNETT, KR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :156-173
[2]  
BRAMBLE JH, UNIFICATION FINITE E, P167
[3]  
CERUTTI J, 1974, NUMER MATH, V26, P227
[4]   Multigrid and multilevel methods for quadratic spline collocation [J].
Christara, CC ;
Smith, B .
BIT, 1997, 37 (04) :781-803
[5]  
DEBOOR C, 1996, SPLINE TOOL USE MATL
[6]  
DOUGLAS J, 1974, LECT NOTES MATH, V385
[7]  
HAJDJIDIMOS A, 1999, SIAM J MATRIX ANAL A, V21, P508
[8]   Finite difference preconditioning cubic spline collocation method of elliptic equations [J].
Kim H.O. ;
Kim S.D. ;
Lee Y.H. .
Numerische Mathematik, 1997, 77 (1) :83-103
[9]   PRECONDITIONING CUBIC SPLINE COLLOCATION DISCRETIZATIONS OF ELLIPTIC-EQUATIONS [J].
KIM, SD ;
PARTER, SV .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :39-72
[10]  
PARTER SV, PRECONDITIONING LECT