Exact solutions of N-dimensional harmonic oscillator via Laplace transformation

被引:1
作者
Chen, G [1 ]
机构
[1] Shaoxing Coll Arts & Sci, Dept Phys, Shaoxing 312000, Peoples R China
[2] Shaoxing Univ, Met Phys & Equipments Inst, Shaoxing 312000, Peoples R China
来源
CHINESE PHYSICS | 2005年 / 14卷 / 06期
关键词
bound state; harmonic oscillator; Laplace transformation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The N-dimensional Schrodinger equation for the harmonic oscillator is reduced to a first-order differential equation in terms of the Laplace transformation and the exact bound state solutions are derived. It is shown that this method of solving Schrodinger equation may serve as a substitute for the standard functional, analytical approach also in lower dimensions.
引用
收藏
页码:1075 / 1076
页数:2
相关论文
共 17 条
[1]   APPLICATION OF THE SHIFTED 1/N EXPANSION TO THE ROTATIONAL-VIBRATIONAL STATES OF THE H2+ MOLECULE [J].
ATAG, S .
PHYSICAL REVIEW A, 1988, 37 (07) :2280-2283
[2]   SCALAR CASIMIR EFFECT FOR A D-DIMENSIONAL SPHERE [J].
BENDER, CM ;
MILTON, KA .
PHYSICAL REVIEW D, 1994, 50 (10) :6547-6555
[3]   DIMENSIONAL EXPANSION FOR THE ISING LIMIT OF QUANTUM-FIELD THEORY [J].
BENDER, CM ;
BOETTCHER, S .
PHYSICAL REVIEW D, 1993, 48 (10) :4919-4923
[4]   The exact solutions of the Schrodinger equation with the Morse potential via Laplace transforms [J].
Chen, G .
PHYSICS LETTERS A, 2004, 326 (1-2) :55-57
[5]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
[6]  
DOETSCH G, 1961, GUIDE APPL LAPLACE T
[7]   The series solutions of the non-relativistic equation with the Morse potential [J].
Dong, SH ;
Sun, GH .
PHYSICS LETTERS A, 2003, 314 (04) :261-266
[8]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[9]   Eigenvalue bounds for transformations of solvable potentials [J].
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09) :2127-2134
[10]   HIGH-PRECISION CALCULATION OF THE EIGENVALUES FOR THE X2+LAMBDA-X2/(1+GX2) POTENTIAL [J].
HODGSON, RJW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1563-1570