Generalized potentials in variable exponent Lebesgue spaces on homogeneous spaces

被引:12
作者
Hajibayov, Mubariz G. [2 ]
Samko, Stefan [1 ]
机构
[1] Univ Algarve, Faro, Portugal
[2] Azerbaijan Acad Sci, Inst Math & Mech, Baku, Azerbaijan
关键词
Generalized potential; variable exponent; variable Lebesgue space; quasimetric measure space; space of homogeneous type; Musielak-Orlicz space; Matuszewska-Orlicz indices; MAXIMAL-FUNCTION; FRACTIONAL INTEGRALS; SOBOLEV EMBEDDINGS; OPERATORS; BOUNDEDNESS; CONVOLUTION;
D O I
10.1002/mana.200710204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider generalized potential operators with the kernel a([rho(x,y)])/[rho(x,y)](N) on bounded quasimetrie measure space (X, mu, d) with doubling measure mu satisfying the upper growth condition mu B(x, r) <= Kr-N, N is an element of (0, infinity). Under some natural assumptions on a(r) in terms of almost monotonicity we prove that such potential operators are bounded from the variable exponent Lebesgue space L-p(.) (X, mu) into a certain Musielak-Orlicz space L-Phi (X, mu) with the N-function Phi(x, r) defined by the exponent p(x) and the function a(r). A reformulation of the obtained result in terms of the Matuszewska-Orlicz indices of the function a(r) is also given. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:53 / 66
页数:14
相关论文
共 47 条
[1]  
[Anonymous], 2004, Fract. Calc. Appl. Anal.
[2]  
[Anonymous], 2004, Real Anal. Exchange
[3]  
[Anonymous], 2002, MATH APPL
[4]  
[Anonymous], 2001, Sci. Math. Jpn
[5]  
[Anonymous], 2003, Fract. Calc. Appl. Anal.
[6]  
[Anonymous], LECT NOTES PURE APPL
[7]  
[Anonymous], 1983, Orlicz spaces and modular spaces, Lecture Note in Mahtematics
[8]  
[Anonymous], 1950, Modulared Semi-Ordered Linear Spaces
[9]  
[Anonymous], 2002, P A RAZMADZE MATH I
[10]  
[Anonymous], 2007, P A RAZMADZE MATH I