Scaling Laws for Block Copolymer Surface Micelles

被引:5
|
作者
Kim, Dong Hyup [1 ,2 ]
Kim, So Youn [1 ,2 ]
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, Seoul 08826, South Korea
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2022年 / 13卷 / 24期
基金
新加坡国家研究基金会;
关键词
DIBLOCK COPOLYMERS; ORDER TRANSITION; NANOPARTICLES; PATTERNS; CONFORMATIONS; ORGANIZATION; INTERFACE; POLYMERS; BEHAVIOR; FILMS;
D O I
10.1021/acs.jpclett.2c00979
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymers under confinement exhibit different structures and properties from the bulk. While block copolymers (BCPs) create well-defined micelles in solution, two-dimensional (2D) spatial confinement at the air-water interface constrains the chain conformations and deforms the micellar structure, thus forming a surface micelle. The BCP surface micelles open up an opportunity in nanoscience and engineering by serving as an interfacial modifier and structural platform. Nevertheless, a scaling law, a principle governing the micellar structure, is absent. Herein, we report a unified scaling relation to describe the combinational structure of BCP surface micelles in two and three dimensions and further reveal their formation mechanism in line with the suggested scaling relation. We investigated the intrinsic scaling relations in a surface pressure-free environment by introducing a concept of excluded volume-dependent scaling exponent based on the scaling theory of 2D polymers. In addition, an extrinsic scaling relation is derived for the surface pressure-dependent corona scaling.
引用
收藏
页码:5380 / 5386
页数:7
相关论文
共 50 条
  • [31] pH and Ionic Strength Responsive Polyelectrolyte Block Copolymer Micelles Prepared by Ring Opening Metathesis Polymerization
    Stubenrauch, Kurt
    Voets, Ilja
    Fritz-Popovski, Gerhard
    Trimmel, Gregor
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2009, 47 (04) : 1178 - 1191
  • [32] pH-responsive destabilization and facile bioconjugation of new hydroxyl-terminated block copolymer micelles
    Khorsand, Behnoush
    Oh, Jung Kwon
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2013, 51 (07) : 1620 - 1629
  • [33] Force Required to Disassemble Block Copolymer Micelles in Water
    Yu, Ying
    Wu, Guanglu
    Liu, Kai
    Zhang, Xi
    LANGMUIR, 2010, 26 (12) : 9183 - 9186
  • [34] Pegylated Thermally Responsive Block Copolymer Micelles and Nanogels via In Situ RAFT Aqueous Dispersion Polymerization
    Rieger, Jutta
    Grazon, Chloe
    Charleux, Bernadette
    Alaimo, David
    Jerome, Christine
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2009, 47 (09) : 2373 - 2390
  • [35] Hairy nanospheres by gelation of reactive block copolymer micelles
    Du, JZ
    Chen, YM
    MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (06) : 491 - 494
  • [36] Synthesis and characterization of PbS nanoparticles in block copolymer micelles
    Schneider, T
    Haase, M
    Kornowski, A
    Naused, S
    Weller, H
    Forster, S
    Antonietti, M
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1997, 101 (11): : 1654 - 1656
  • [37] Fast Photodegradable Block Copolymer Micelles for Burst Release
    Han, Dehui
    Tong, Xia
    Zhao, Yue
    MACROMOLECULES, 2011, 44 (03) : 437 - 439
  • [38] Media-Modulated Interchain or Intrachain Coordination of Amphiphilic Block Copolymer Micelles
    Gao, Huan
    Liu, Guhuan
    Chen, Xuejun
    Hao, Zhenhua
    Tong, Jianyu
    Lu, Lican
    Cai, Yuanli
    Long, Feng
    Zhu, Mingqiang
    MACROMOLECULES, 2010, 43 (14) : 6156 - 6165
  • [39] Swelling Transitions in Layer-by-Layer Assemblies of UCST Block Copolymer Micelles
    Palanisami, Anbazhagan
    Sukhishvili, Svetlana A.
    MACROMOLECULES, 2018, 51 (09) : 3467 - 3476
  • [40] Amphiphilic block copolymer micelles with fluorescence as nano-carriers for doxorubicin delivery
    Chen, Jiucun
    Liu, Mingzhu
    RSC ADVANCES, 2014, 4 (19): : 9684 - 9692