Symmetry and duality on n-Gorenstein rings

被引:25
作者
Iyama, O [1 ]
机构
[1] Himeji Inst Technol, Dept Math, Himeji, Hyogo 6712201, Japan
关键词
D O I
10.1016/S0021-8693(03)00419-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will study homological properties of noetherian rings. As a bridge between the n-Gorenstein property and the dominant dimension, we will introduce the dominant numbers of rings and prove their left-right symmetry (Section 1.1). The (1, n)-condition (Section 2.2) on selfinjective resolutions provides a useful tool on our study. Moreover, we will give two dualities on n-Gorenstein rings (Sections 1.2, 1.3), where one of them is closely related to the Auslander-Reiten theory (Section 1.3.1). (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:528 / 535
页数:8
相关论文
共 18 条
  • [1] K-GORENSTEIN ALGEBRAS AND SYZYGY MODULES
    AUSLANDER, M
    REITEN, I
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 92 (01) : 1 - 27
  • [2] CHARACTERIZATION OF ORDERS OF FINITE LATTICE TYPE
    AUSLANDER, M
    ROGGENKAMP, KW
    [J]. INVENTIONES MATHEMATICAE, 1972, 17 (01) : 79 - +
  • [3] Syzygy modules for noetherian rings
    Auslander, M
    Reiten, I
    [J]. JOURNAL OF ALGEBRA, 1996, 183 (01) : 167 - 185
  • [4] Auslander M., 1969, MEM AM MATH SOC, V94
  • [5] AUSLANDER M, 1995, CAMBRIDGE STUD ADV M, V36
  • [6] Bjork J.E., 1989, Lecture Notes in Math., V1404, P137
  • [7] BJORK JE, 1990, PROG MATH, V92, P425
  • [8] Clark J, 2001, TRENDS MATH, P95
  • [9] CURTIS C. W., 1990, METHODS REPRESENTATI, V1
  • [10] Fossum R.M., 1975, LECT NOTES MATH, V456