Pattern Recognition Using Adaptive Schur-like Parametrization of Signals with Forgetting Factor

被引:0
作者
Libal, Urszula [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Signal Proc Syst Dept, Wroclaw, Poland
来源
2018 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS (ICSES 2018) | 2018年
关键词
Schur parametrization; feature extraction; adaptive algorithm; signal processing; pattern recognition; RECURSIVE LEAST-SQUARES; RLS ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents a feature extraction method for signal classification tasks. The proposed method is based on linear adaptive Schur-like parametrization. The parametrization performance depends on a forgetting factor. The impact of forgetting factor, used in the adaptive procedure, on the quality of recognition was tested on well-known benchmark data.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 37 条
[1]  
[Anonymous], OPERATOR THEORY ADV
[2]   MULTISCALE AUTOREGRESSIVE PROCESSES .1. SCHUR-LEVINSON PARAMETRIZATIONS [J].
BASSEVILLE, M ;
BENVENISTE, A ;
WILLSKY, AS .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (08) :1915-1934
[3]   Songs Recognition Using Audio Information Fusion [J].
Biernacki, Pawel .
INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, 61 (01) :37-41
[4]  
Biernacki P, 2011, LECT NOTES ARTIF INT, V6682, P406, DOI 10.1007/978-3-642-22000-5_42
[5]  
Biernacki P, 2007, ADV INTEL SOFT COMPU, V45, P334
[6]  
Bishop Christopher M, 2016, Pattern recognition and machine learning
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]  
Choi S., 2012, SYSTEMS MODELING SIM, V3398, P107
[9]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[10]  
Deprettere E.F.A., 1980, GENERALIZED SCHURDAR