Bioinformatic analysis of molecular network of glucosinolate biosynthesis

被引:24
作者
Chen, Yazhou [1 ,2 ]
Yan, Xiufeng [2 ]
Chen, Sixue [1 ,3 ]
机构
[1] Univ Florida, Genet Inst, Dept Biol, Plant Mol & Cellular Biol Program, Gainesville, FL 32610 USA
[2] NE Forestry Univ, Key Lab Saline Alkali Vegetat Ecol Restorat Oil F, Harbin 150040, Peoples R China
[3] Univ Florida, Interdisciplinary Ctr Biotechnol Res, Gainesville, FL 32610 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Bioinformatics; Arabidopsis; Glucosinolate; In silico network; SECONDARY METABOLISM; COORDINATED CONTROL; GENE NETWORKS; ARABIDOPSIS; TRANSCRIPTION; CATALYZES; ENZYMES; INVOLVEMENT; ASSOCIATION; CYP83B1;
D O I
10.1016/j.compbiolchem.2010.12.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glucosinolates constitute a major group of secondary metabolites in Arabidopsis, which play an important role in plant interaction with pathogens and insects. Advances in glucosinolate research have defined the biosynthetic pathways. However, cross-talk and interaction between glucosinolate pathway and other molecular pathways are largely unknown. Here three bioinformatics tools were used to explore novel components and pathway connections in glucosinolate network. Although none of the software tools were prefect to predict glucosinolate genes, combination of results generated by all the tools led to successful prediction of all known glucosinolate genes. This approach was used to predict new genes in glucosinolate network. A total of 330 genes were found with high potential to relate to glucosinolate biosynthesis. Among them 64 genes were selected to construct glucosinolate network because their individual connection to at least one known glucosinolate gene was predicted by all the software tools. Microarray data of candidate gene mutants were used for validation of the results. The mutants of nine genes predicted by glucosinolate seed genes all exhibited changes in the expression of glucosinolate genes. Four of the genes have been well-known to functionally interact with glucosinolate biosynthesis. These results indicate that the approach we took provides a powerful way to reveal new players in glucosinolate networks. Creation of an in silico network of glucosinolate biosynthesis will allow the generation of many testable hypotheses and ultimately enable predictive biology. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 58 条
[31]   A map of the interactome network of the metazoan C-elegans [J].
Li, SM ;
Armstrong, CM ;
Bertin, N ;
Ge, H ;
Milstein, S ;
Boxem, M ;
Vidalain, PO ;
Han, JDJ ;
Chesneau, A ;
Hao, T ;
Goldberg, DS ;
Li, N ;
Martinez, M ;
Rual, JF ;
Lamesch, P ;
Xu, L ;
Tewari, M ;
Wong, SL ;
Zhang, LV ;
Berriz, GF ;
Jacotot, L ;
Vaglio, P ;
Reboul, J ;
Hirozane-Kishikawa, T ;
Li, QR ;
Gabel, HW ;
Elewa, A ;
Baumgartner, B ;
Rose, DJ ;
Yu, HY ;
Bosak, S ;
Sequerra, R ;
Fraser, A ;
Mango, SE ;
Saxton, WM ;
Strome, S ;
van den Heuvel, S ;
Piano, F ;
Vandenhaute, J ;
Sardet, C ;
Gerstein, M ;
Doucette-Stamm, L ;
Gunsalus, KC ;
Harper, JW ;
Cusick, ME ;
Roth, FP ;
Hill, DE ;
Vidal, M .
SCIENCE, 2004, 303 (5657) :540-543
[32]   The Transcript and Metabolite Networks Affected by the Two Clades of Arabidopsis Glucosinolate Biosynthesis Regulators [J].
Malitsky, Sergey ;
Blum, Eyal ;
Less, Hadar ;
Venger, Ilya ;
Elbaz, Moshe ;
Morin, Shai ;
Eshed, Yuval ;
Aharoni, Asaph .
PLANT PHYSIOLOGY, 2008, 148 (04) :2021-2049
[33]   Cytochrome P450CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid [J].
Mikkelsen, MD ;
Hansen, CH ;
Wittstock, U ;
Halkier, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (43) :33712-33717
[34]   Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis [J].
Mikkelsen, MD ;
Naur, P ;
Halkier, BA .
PLANT JOURNAL, 2004, 37 (05) :770-777
[35]   Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways [J].
Mikkelsen, MD ;
Petersen, BL ;
Glawischnig, E ;
Jensen, AB ;
Andreasson, E ;
Halkier, BA .
PLANT PHYSIOLOGY, 2003, 131 (01) :298-308
[36]   Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8'-hydroxylase [J].
Millar, AA ;
Jacobsen, JV ;
Ross, JJ ;
Helliwell, CA ;
Poole, AT ;
Scofield, G ;
Reid, JB ;
Gubler, F .
PLANT JOURNAL, 2006, 45 (06) :942-954
[37]   Metabolomic, Transcriptional, Hormonal, and Signaling Cross-Talk in Superroot2 [J].
Morant, Marc ;
Ekstrom, Claus ;
Ulvskov, Peter ;
Kristensen, Charlotte ;
Rudemo, Mats ;
Olsen, Carl Erik ;
Hansen, Jorgen ;
Jorgensen, Kirsten ;
Jorgensen, Bodil ;
Moller, Birger Lindberg ;
Bak, Soren .
MOLECULAR PLANT, 2010, 3 (01) :192-211
[38]   Disruption of Adenosine-5′-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites [J].
Mugford, Sarah G. ;
Yoshimoto, Naoko ;
Reichelt, Michael ;
Wirtz, Markus ;
Hill, Lionel ;
Mugford, Sam T. ;
Nakazato, Yoshimi ;
Noji, Masaaki ;
Takahashi, Hideki ;
Kramell, Robert ;
Gigolashvili, Tamara ;
Fluegge, Ulf-Ingo ;
Wasternack, Claus ;
Gershenzon, Jonathan ;
Hell, Ruediger ;
Saito, Kazuki ;
Kopriva, Stanislav .
PLANT CELL, 2009, 21 (03) :910-927
[39]   Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis [J].
Mutwil, Marek ;
Ruprecht, Colin ;
Giorgi, Federico M. ;
Bringmann, Martin ;
Usadel, Bjoern ;
Persson, Staffan .
MOLECULAR PLANT, 2009, 2 (05) :1015-1024
[40]   Cytochromes P450 in the biosynthesis of glucosinolates and indole alkaloids [J].
Nafisi M. ;
Sønderby I.E. ;
Hansen B.G. ;
Geu-Flores F. ;
Nour-Eldin H.H. ;
Nørholm M.H.H. ;
Jensen N.B. ;
Li J. ;
Halkier B.A. .
Phytochemistry Reviews, 2006, 5 (2-3) :331-346