Cyclopentane peptide nucleic acid: Gold nanoparticle conjugates for the detection of nucleic acids in a microfluidic format

被引:3
作者
Amarasekara, Harsha [1 ]
Oshaben, Kaylyn M. [1 ,2 ]
Jeans, Kendra B. [1 ]
Sangsari, Paniz Rezvan [3 ]
Morgan, Nicole Y. [3 ]
O'Farrell, Brian [2 ]
Appella, Daniel H. [1 ]
机构
[1] Natl Inst Diabet & Digest & Kidney Dis, Synthet Bioact Mol Sect, Lab Bioorgan Chem LBC, NIH, 8 Ctr Dr,Room 404, Bethesda, MD 20892 USA
[2] Altratech Ltd, Dept Res & Dev, Cork, Ireland
[3] Natl Inst Biomed Imaging & Bioengn, Biomed Engn & Phys Sci Shared Resource, NIH, Bethesda, MD USA
基金
美国国家卫生研究院;
关键词
gold nanoparticles; microfluidics; nucleic acid detection; Peptide nucleic acid; BINDING-AFFINITY; DNA; DIAGNOSTICS;
D O I
10.1002/bip.23481
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Routine patient testing for viral infections is critical to identify infected individuals for treatment and to prevent spreading of infections to others. Developing robust and reliable diagnostic tools to detect nucleic acids of viruses at the point-of-care could greatly assist the clinical management of viral infections. The remarkable stability and high binding affinity of peptide nucleic acids (PNAs) to target nucleic acids could make PNA-based biosensors an excellent starting point to develop new nucleic acid detection technologies. We report the application of cyclopentane-modified PNAs to capture target nucleic acids in a microfluidic channel, and the use of bioorthogonal PNAs conjugated to gold nanoparticles as probes to semi-quantitatively signal the presence of a target nucleic acid derived from HIV-1. The basic results presented could be used to develop more advanced devices to detect nucleic acids from viruses such as HIV, SARS-CoV-2, and a wide range of other human diseases.
引用
收藏
页数:9
相关论文
共 27 条
[1]   Synthesis of Stable Peptide Nucleic Acid-Modified Gold Nanoparticles and their Assembly onto Gold Surfaces [J].
Anstaett, Philipp ;
Zheng, Yuanhui ;
Thai, Thibaut ;
Funston, Alison M. ;
Bach, Udo ;
Gasser, Gilles .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (15) :4217-4220
[2]   Microfluidic devices for detection ofRNAviruses [J].
Basiri, Arefeh ;
Heidari, Arash ;
Nadi, Melina Farshbaf ;
Fallahy, Mohammad Taha Pahlevan ;
Nezamabadi, Sasan Salehi ;
Sedighi, Mohammadreza ;
Saghazadeh, Amene ;
Rezaei, Nima .
REVIEWS IN MEDICAL VIROLOGY, 2021, 31 (01) :1-11
[3]   Microfluidic devices for the detection of viruses: aspects of emergency fabrication during the COVID-19 pandemic and other outbreaks [J].
Berkenbrock, Jose Alvim ;
Grecco-Machado, Rafaela ;
Achenbach, Sven .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2243)
[4]   A two-color-change, nanoparticle-based method for DNA detection [J].
Cao, YC ;
Jin, RC ;
Thaxton, S ;
Mirkin, CA .
TALANTA, 2005, 67 (03) :449-455
[5]   Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins [J].
Choi, Seokheun ;
Goryll, Michael ;
Sin, Lai Yi Mandy ;
Wong, Pak Kin ;
Chae, Junseok .
MICROFLUIDICS AND NANOFLUIDICS, 2011, 10 (02) :231-247
[6]   Access to diagnostics in support of HIV/AIDS and tuberculosis treatment in developing countries [J].
Cohen, Gary M. .
AIDS, 2007, 21 :S81-S87
[7]   Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles [J].
Gourishankar, A ;
Shukla, S ;
Ganesh, KN ;
Sastry, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13186-13187
[8]   Colorimetric Detection of DNA Using Unmodified Metallic Nanoparticles and Peptide Nucleic Acid Probes [J].
Kanjanawarut, Roejarek ;
Su, Xiaodi .
ANALYTICAL CHEMISTRY, 2009, 81 (15) :6122-6129
[9]   Protein immobilization techniques for microfluidic assays [J].
Kim, Dohyun ;
Herr, Amy E. .
BIOMICROFLUIDICS, 2013, 7 (04)
[10]   PLANAR CHIPS TECHNOLOGY FOR MINIATURIZATION AND INTEGRATION OF SEPARATION TECHNIQUES INTO MONITORING SYSTEMS - CAPILLARY ELECTROPHORESIS ON A CHIP [J].
MANZ, A ;
HARRISON, DJ ;
VERPOORTE, EMJ ;
FETTINGER, JC ;
PAULUS, A ;
LUDI, H ;
WIDMER, HM .
JOURNAL OF CHROMATOGRAPHY, 1992, 593 (1-2) :253-258