Classification of the reducible Verma modules over the Jacobi algebra G2

被引:1
作者
Aizawa, N. [1 ]
Dobrev, V. K. [2 ]
Doi, S. [1 ]
机构
[1] Osaka Prefecture Univ, Dept Phys Sci, Nakamozu Campus, Sakai, Osaka 5998531, Japan
[2] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tsarigradsko Chaussee, Sofia 1784, Bulgaria
关键词
Jacobi algebra; representations; reducible Verma modules;
D O I
10.1088/1751-8121/ac2a05
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper we study the representations of the Jacobi algebra. More concretely, we define, analogously to the case of semi-simple Lie algebras, the Verma modules over the Jacobi algebra G(2). We study their reducibility and give explicit construction of the reducible Verma modules exhibiting the corresponding singular vectors. Using this information we give a complete classification of the reducible Verma modules. More than this we exhibit their interrelation of embeddings between these modules. These embeddings are illustrated by diagrams of the embedding patterns so that each reducible Verma module appears in one such diagram.
引用
收藏
页数:42
相关论文
共 12 条
  • [1] Schrodinger Algebra and Non-Relativistic Holography
    Aizawa, N.
    Dobrev, V. K.
    [J]. 7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [2] Intertwining operator realization of non-relativistic holography
    Aizawa, N.
    Dobrev, V. K.
    [J]. NUCLEAR PHYSICS B, 2010, 828 (03) : 581 - 593
  • [3] Berceanu S, 2006, J GEOM SYMMETRY PHYS, V5, P5
  • [4] BERNDT R., 1998, Progress in Mathematics, V163
  • [5] Dobrev V. K., 1997, Reports on Mathematical Physics, V39, P201, DOI 10.1016/S0034-4877(97)88001-9
  • [6] Dobrev V.K., 1988, Rep. Math. Phys., V25, P159
  • [7] Dobrev VK., 2021, CRM SERIES MATH PHYS, P217
  • [8] Dobrev VK., 2019, DE GRUYT STUD MATH, V53
  • [9] Category O for the Schrodinger algebra
    Dubsky, Brendan
    Lu, Rencai
    Mazorchuk, Volodymyr
    Zhao, Kaiming
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 460 : 17 - 50
  • [10] Eichler M., 1985, The Theory of Jacobi Forms, V55