Test polynomials for automorphisms of polynomial and free associative algebras

被引:5
作者
Drensky, V [1 ]
Yu, JT
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Akad G Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
[2] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
D O I
10.1006/jabr.1998.7483
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider test polynomials in the polynomial algebra and the free associative algebra. A test polynomial is defined by the following property: every endomorphism which fixes the polynomial is an automorphism. We construct families of test polynomials for the polynomial algebra and the free associative algebra and show how different techniques may be used in the investigation of test polynomials. We also introduce the notion of a test vector space and determine all test vector spaces of the free associative algebra. (C) 1998 Academic Press.
引用
收藏
页码:491 / 510
页数:20
相关论文
共 14 条
[1]  
Cohn P. M., 1985, LONDON MATH SOC MONO, V19
[2]   AUTOMORPHISMS OF A FREE ASSOCIATIVE ALGEBRA OF RANK 2 .2. [J].
CZERNIAKIEWICZ, AJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 171 (SEP) :309-315
[3]   A COMMUTATOR TEST FOR 2 ELEMENTS TO GENERATE THE FREE ALGEBRA OF RANK 2 [J].
DICKS, W .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :48-51
[4]   Orbits in free algebras of rank two [J].
Drensky, V ;
Yu, JT .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (06) :1895-1906
[5]  
Makar-Limanov L. G., 1970, FUNK ANAL EGO PRILOZ, V4, P107
[6]   TEST ELEMENTS FOR MONOMORPHISMS OF FREE LIE-ALGEBRAS AND LIE-SUPERALGEBRAS [J].
MIKHALEV, AA ;
ZOLOTYKH, AA .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (13) :4995-5001
[7]   Test elements and retracts of free Lie algebras [J].
Mikhalev, AA ;
Yu, JT .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (10) :3283-3289
[8]  
NAGATA M, 1972, LECT MATH
[9]   ON THE RANK OF AN ELEMENT OF A FREE LIE-ALGEBRA [J].
SHPILRAIN, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (05) :1303-1307
[10]   RECOGNIZING AUTOMORPHISMS OF THE FREE GROUPS [J].
SHPILRAIN, V .
ARCHIV DER MATHEMATIK, 1994, 62 (05) :385-392