A New Brain MRI Image Segmentation Strategy Based on K-means Clustering and SVM

被引:16
作者
Liu, Jianwei [1 ]
Guo, Lei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian, Peoples R China
来源
2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II | 2015年
关键词
k-means clustering; support vector machine (SVM); feature extraction;
D O I
10.1109/IHMSC.2015.182
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the problem of noise and no reference image during brain magnetic resonance imagery (MRI) image segmentation, this paper proposes a new strategy to segment brain MRI image based on K-means clustering algorithm and support vector machine (SVM). Firstly, the strategy segments brain MRI image using K-means clustering algorithm to obtain the initial classification result as the class label, secondly, the feature vectors of each pixel of brain tissue are selected as the training samples and test samples, finally, brain MRI image is segmented by SVM. Experimental results show that the proposed segmentation strategy obtains better segmentation effect, especially has a good noise suppression for brain images with low signal-noise-ratio (SNR).
引用
收藏
页数:4
相关论文
共 11 条
[1]   Review of brain MRI image segmentation methods [J].
Balafar, M. A. ;
Ramli, A. R. ;
Saripan, M. I. ;
Mashohor, S. .
ARTIFICIAL INTELLIGENCE REVIEW, 2010, 33 (03) :261-274
[2]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[3]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[4]  
Date M. K., 2001, INT J COMPUTER SCI A, V6, P2127
[5]  
Liu Haipeng, 2009, Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments (ICEMI 2009), P1, DOI 10.1109/ICEMI.2009.5274868
[6]   Medical Image Segmentation Methods, Algorithms, and Applications [J].
Norouzi, Alireza ;
Rahim, Mohd Shafry Mohd ;
Altameem, Ayman ;
Saba, Tanzila ;
Rad, Abdolvahab Ehsani ;
Rehman, Amjad ;
Uddin, Mueen .
IETE TECHNICAL REVIEW, 2014, 31 (03) :199-213
[7]   Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies [J].
Ortiz, A. ;
Gorriz, J. M. ;
Ramirez, J. ;
Salas-Gonzalez, D. ;
Llamas-Elvira, J. M. .
APPLIED SOFT COMPUTING, 2013, 13 (05) :2668-2682
[8]  
Somasundaram K., 2013, The International Journal of Multimedia & Its Applications, V5, P11
[9]   A fuzzy C-means model based on the spatial structural information for brain MRI segmentation [J].
Wang, Shunfeng ;
Geng, Zhiyuan ;
Zhang, Jianwei ;
Chen, Yunjie ;
Wang, Jin .
International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7 (01) :313-322
[10]  
XIAO J, 2014, P CONTR DEC C 2014 C, P1712, DOI DOI 10.1109/CCDC.2014.6852445