Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images

被引:47
作者
Colomer, Adrian [1 ]
Igual, Jorge [2 ]
Naranjo, Valery [1 ]
机构
[1] Univ Politecn Valencia, Inst Res & Innovat Bioengn, I3B, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, ITEAM Res Inst, Dept Comunicac, E-46022 Valencia, Spain
关键词
biomedical image processing; diabetic retinopathy; classification; granulometry-based descriptor; LBP; hand-driven learning; exudates; microaneurysms; RETINAL IMAGES; AUTOMATIC DETECTION; OPTIC DISC; CLASSIFICATION; ALGORITHM; DIAGNOSIS;
D O I
10.3390/s20041005
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Estimated blind people in the world will exceed 40 million by 2025. To develop novel algorithms based on fundus image descriptors that allow the automatic classification of retinal tissue into healthy and pathological in early stages is necessary. In this paper, we focus on one of the most common pathologies in the current society: diabetic retinopathy. The proposed method avoids the necessity of lesion segmentation or candidate map generation before the classification stage. Local binary patterns and granulometric profiles are locally computed to extract texture and morphological information from retinal images. Different combinations of this information feed classification algorithms to optimally discriminate bright and dark lesions from healthy tissues. Through several experiments, the ability of the proposed system to identify diabetic retinopathy signs is validated using different public databases with a large degree of variability and without image exclusion.
引用
收藏
页数:21
相关论文
共 50 条
[41]   Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening [J].
Sarni Suhaila Rahim ;
Chrisina Jayne ;
Vasile Palade ;
James Shuttleworth .
Neural Computing and Applications, 2016, 27 :1149-1164
[42]   Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network [J].
Skouta, Ayoub ;
Elmoufidi, Abdelali ;
Jai-Andaloussi, Said ;
Ouchetto, Ouail .
JOURNAL OF BIG DATA, 2022, 9 (01)
[43]   A Systematic Review on Fundus Image-Based Diabetic Retinopathy Detection and Grading: Current Status and Future Directions [J].
Ikram, Amna ;
Imran, Azhar ;
Li, Jianqiang ;
Alzubaidi, Abdulaziz ;
Fahim, Safa ;
Yasin, Amanullah ;
Fathi, Hanaa .
IEEE ACCESS, 2024, 12 :96273-96303
[44]   RETRACTED: Fundus image lesion detection algorithm for diabetic retinopathy screening (Retracted Article) [J].
Kanimozhi, J. ;
Vasuki, P. ;
Roomi, S. Md Mansoor .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (07) :7407-7416
[45]   An enhanced swarm optimization-based deep neural network for diabetic retinopathy classification in fundus images [J].
Dayana, A. Mary ;
Emmanuel, W. R. Sam .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (15) :20611-20642
[46]   Segmentation of Eye Fundus Images by Density Clustering in Diabetic Retinopathy [J].
Furtado, P. ;
Travassos, C. ;
Monteiro, R. ;
Oliveira, S. ;
Baptista, C. ;
Carrilho, F. .
2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, :25-28
[47]   Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images [J].
Ganesan, Karthikeyan ;
Martis, Roshan Joy ;
Acharya, U. Rajendra ;
Chua, Chua Kuang ;
Min, Lim Choo ;
Ng, E. Y. K. ;
Laude, Augustinus .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2014, 52 (08) :663-672
[48]   Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model [J].
Shankar, K. ;
Sait, Abdul Rahaman Wahab ;
Gupta, Deepak ;
Lakshmanaprabu, S. K. ;
Khanna, Ashish ;
Pandey, Hari Mohan .
PATTERN RECOGNITION LETTERS, 2020, 133 :210-216
[49]   Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images [J].
Karthikeyan Ganesan ;
Roshan Joy Martis ;
U. Rajendra Acharya ;
Chua Kuang Chua ;
Lim Choo Min ;
E. Y. K. Ng ;
Augustinus Laude .
Medical & Biological Engineering & Computing, 2014, 52 :663-672
[50]   Morphological Technique for Detection of Microaneurysms from RGB Fundus Images [J].
Ahmed, Mohammed Shafeeq ;
Indira, Baddam .
2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, :44-47