Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images

被引:50
作者
Colomer, Adrian [1 ]
Igual, Jorge [2 ]
Naranjo, Valery [1 ]
机构
[1] Univ Politecn Valencia, Inst Res & Innovat Bioengn, I3B, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, ITEAM Res Inst, Dept Comunicac, E-46022 Valencia, Spain
关键词
biomedical image processing; diabetic retinopathy; classification; granulometry-based descriptor; LBP; hand-driven learning; exudates; microaneurysms; RETINAL IMAGES; AUTOMATIC DETECTION; OPTIC DISC; CLASSIFICATION; ALGORITHM; DIAGNOSIS;
D O I
10.3390/s20041005
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Estimated blind people in the world will exceed 40 million by 2025. To develop novel algorithms based on fundus image descriptors that allow the automatic classification of retinal tissue into healthy and pathological in early stages is necessary. In this paper, we focus on one of the most common pathologies in the current society: diabetic retinopathy. The proposed method avoids the necessity of lesion segmentation or candidate map generation before the classification stage. Local binary patterns and granulometric profiles are locally computed to extract texture and morphological information from retinal images. Different combinations of this information feed classification algorithms to optimally discriminate bright and dark lesions from healthy tissues. Through several experiments, the ability of the proposed system to identify diabetic retinopathy signs is validated using different public databases with a large degree of variability and without image exclusion.
引用
收藏
页数:21
相关论文
共 57 条
[1]   Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy [J].
Abramoff, Michael D. ;
Folk, James C. ;
Han, Dennis P. ;
Walker, Jonathan D. ;
Williams, David F. ;
Russell, Stephen R. ;
Massin, Pascale ;
Cochener, Beatrice ;
Gain, Philippe ;
Tang, Li ;
Lamard, Mathieu ;
Moga, Daniela C. ;
Quellec, Gwenole ;
Niemeijer, Meindert .
JAMA OPHTHALMOLOGY, 2013, 131 (03) :351-357
[2]  
Agurto C, 2012, IEEE ENG MED BIO, P4946, DOI 10.1109/EMBC.2012.6347102
[3]   Automated detection of exudates and macula for grading of diabetic macular edema [J].
Akram, M. Usman ;
Tariq, Anam ;
Khan, Shoab A. ;
JavedDepartment, M. Younus .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 114 (02) :141-152
[4]   Detection and classification of retinal lesions for grading of diabetic retinopathy [J].
Akram, M. Usman ;
Khalid, Shehzad ;
Tariq, Anam ;
Khan, Shoab A. ;
Azam, Farooque .
COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 45 :161-171
[5]   Retinal Vessels Segmentation Techniques and Algorithms: A Survey [J].
Almotiri, Jasem ;
Elleithy, Khaled ;
Elleithy, Abdelrahman .
APPLIED SCIENCES-BASEL, 2018, 8 (02)
[6]  
Amel F., 2012, Int. J. Image, V4, P19, DOI [DOI 10.5815/ijigsp.2012.04.03, DOI 10.5815/IJIGSP.2012.04.03]
[7]  
[Anonymous], 2016, ARXIV160500763
[8]  
[Anonymous], 2001, Learning with Kernels |
[9]  
[Anonymous], Technical report
[10]  
[Anonymous], P MED IM 2014 COMP A