Size Stability and H2/CO Selectivity for Au Nanoparticles during Electrocatalytic CO2 Reduction

被引:113
|
作者
Trindell, Jamie A. [1 ]
Clausmeyer, Jan [1 ]
Crooks, Richard M. [1 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Dept Chem, 105 East 24th St,Stop A5300, Austin, TX 78712 USA
关键词
ENCAPSULATED PD NANOPARTICLES; METAL NANOPARTICLES; GOLD NANOPARTICLES; CARBON-DIOXIDE; DENDRIMER; ELECTROREDUCTION; HYDROGENATION; ENHANCEMENT; NITROPHENOL; REACTIVITY;
D O I
10.1021/jacs.7b06775
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we show that Au nanoparticles (AuNPs) stabilized with either citrate or by low-generation dendrimers rapidly grow during electrocatalytic reduction of CO2. For example, citrate-stabilized AuNPs and AuNPs encapsulated within sixth-generation, hydroxyl terminated, poly(amidoamine) dendrimers (G6-OH DENs) having diameters of similar to 2 nm grow substantially in size (to 6-7 nm) and polydispersity during just 15 min of electrolysis at -0.80 V (vs RHE). This degree of instability makes it impossible to correlate the structure of AuNPs determined prior to electrocatalysis to their catalytic function. In contrast to the G6-OH dendrimer, the higher generation G8-OH analogue stabilizes AuNPs under the same conditions that lead to instability of the other two materials. More specifically, G8-OH DENs having an initial size of 1.7 +/- 0.3 nm increase to only 2.2 +/- 0.5 nm during electrolysis in 0.10 M NaHCO3 at -0.80 V (vs RHE). Even when the electrolysis is carried out at -1.20 V, the higher-generation dendrimer stabilizes encapsulated AuNPs. This is presumably due to the compactness of the periphery of the G8-OH dendrimer. Although the G8-OH dendrimer nearly eliminates AuNP growth, the surface of the AuNP is still accessible for electrocatalytic reactions. The smaller, more stable G8-OH DENs strongly favor formation of H-2 over CO. Some previous reports have suggested that AuNPs in the similar to 2 nm size range yield primarily CO, but we believe these findings are a consequence of the growth of the AuNPs during catalysis and do not reflect the true function of similar to 2 nm AuNPs.
引用
收藏
页码:16161 / 16167
页数:7
相关论文
共 50 条
  • [21] Electrocatalytic CO2 Reduction and H2 Evolution by a Copper (II) Complex with Redox-Active Ligand
    Li, Jingjing
    Zhang, Shifu
    Wang, Jinmiao
    Yin, Xiaomeng
    Han, Zhenxing
    Chen, Guobo
    Zhang, Dongmei
    Wang, Mei
    MOLECULES, 2022, 27 (04):
  • [22] The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2
    Moller, Tim
    Ngo Thanh, Trung
    Wang, Xingli
    Ju, Wen
    Jovanov, Zarko
    Strasser, Peter
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (11) : 5995 - 6006
  • [23] High Formate Selectivity and Deactivation Mechanism of CuS Nanoparticles in CO2 Electrocatalytic Reduction Reaction
    Wang, Min
    Li, Xiaoyao
    Ma, Xia
    Wang, Jie
    Jin, Xixiong
    Zhang, Lingxia
    Shi, Jianlin
    CHEMSUSCHEM, 2023, 16 (24)
  • [24] Enhanced selectivity and activity for electrocatalytic reduction of CO2 to CO on an anodized Zn/carbon/Ag electrode
    Gao, Yugang
    Li, Fengping
    Zhou, Peng
    Wang, Zeyan
    Zheng, Zhaoke
    Wang, Peng
    Liu, Yuanyuan
    Dai, Ying
    Whangbo, Myung-Hwan
    Huang, Baibiao
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) : 16685 - 16689
  • [25] Catalytic and photocatalytic reactions of H2 + CO2 on supported Au catalysts
    Halasi, Gyula
    Gazsi, Andrea
    Bansagi, Tamas
    Solymosi, Frigyes
    APPLIED CATALYSIS A-GENERAL, 2015, 506 : 85 - 90
  • [26] Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO2 Reduction
    Cao, Zhi
    Zacate, Samson B.
    Sun, Xiaodong
    Liu, Jinjia
    Hale, Elizabeth M.
    Carson, William P.
    Tyndall, Sam B.
    Xu, Jun
    Liu, Xingwu
    Liu, Xingchen
    Song, Chang
    Luo, Jheng-hua
    Cheng, Mu-Jeng
    Wen, Xiaodong
    Liu, Wei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (39) : 12675 - 12679
  • [27] Ligand-Free Silver Nanoparticles for CO2 Electrocatalytic Reduction to CO
    Mattarozzi, Francesco
    Visser, Nienke
    de Rijk, Jan Willem
    Ngene, Peter
    de Jongh, Petra
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2022, 2022 (29)
  • [28] Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO2 reduction: the role of the carbon support in high selectivity
    Jin, Lei
    Liu, Ben
    Wang, Pu
    Yao, Huiqin
    Achola, Laura A.
    Kerns, Peter
    Lopes, Aaron
    Yang, Yue
    Ho, Josha
    Moewes, Alexander
    Pei, Yong
    He, Jie
    NANOSCALE, 2018, 10 (30) : 14678 - 14686
  • [29] Defective graphene for electrocatalytic CO2 reduction
    Han, Peng
    Yu, Xiaomin
    Yuan, Di
    Kuang, Min
    Wang, Yifei
    Al-Enizi, Abdullah M.
    Zheng, Gengfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 534 : 332 - 337
  • [30] Electrocatalytic CO2 reduction in acidic medium
    Hao, Qi
    Liu, Dong-Xue
    Zhong, Hai-Xia
    Tang, Qi
    Yan, Jun-Min
    CHEM CATALYSIS, 2023, 3 (03):