Graphene kirigami as an ultra-permeable water desalination membrane

被引:12
作者
Gao, Yuan [1 ,2 ,3 ]
Chen, Weiqiang [4 ]
Liu, Yanming [2 ]
Wu, Jiangyu [3 ]
Jing, Hongwen [3 ]
机构
[1] Nantong Univ, Sch Transportat & Civil Engn, Nantong 226019, Peoples R China
[2] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[3] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R China
[4] Univ Manchester, Sch Engn, Dept Mech Aerosp & Civil Engn, Manchester M13 9PL, England
基金
中国国家自然科学基金;
关键词
Graphene kirigami; Desalination; Membrane; Molecular dynamics simulation; MOLECULAR-DYNAMICS; GAS SEPARATION; NANOFILTRATION;
D O I
10.1016/j.carbon.2022.04.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present study, we reveal the potential of graphene kirigami (GK) as an ultra-permeable membrane for water desalination using molecular dynamics simulation. The results demonstrate that the GK membrane has superior performance in water permeance, obtaining over 103 L/m2/h/bar with 100% salt rejection. The theoretical efficiency of water permeance using GK membrane is 2.4-5.8 times higher than that of the nanoporous graphene membrane and 2-4 orders of magnitude higher than reported conventional reverse osmosis membranes. Due to the unique geometry of the kirigami structure, the GK membrane would form the adsorption channels to reduce the energy barrier during the desalination processes and guide water molecules to be filtered more effectively. Moreover, compared with the nanoporous graphene, the GK membranes do not have rigorous pore geometry restrictions for desalination and can be generated via mechanical deformation, which provides significant convenience for future applications in practical projects.(C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 47 条
  • [1] Graphene kirigami
    Blees, Melina K.
    Barnard, Arthur W.
    Rose, Peter A.
    Roberts, Samantha P.
    McGill, Kathryn L.
    Huang, Pinshane Y.
    Ruyack, Alexander R.
    Kevek, Joshua W.
    Kobrin, Bryce
    Muller, David A.
    McEuen, Paul L.
    [J]. NATURE, 2015, 524 (7564) : 204 - +
  • [2] Nanofluidics coming of age
    Bocquet, Lyderic
    [J]. NATURE MATERIALS, 2020, 19 (03) : 254 - 256
  • [3] Monolayer Graphene Coating of Intracortical Probes for Long-Lasting Neural Activity Monitoring
    Bourrier, Antoine
    Shkorbatova, Polina
    Bonizzato, Marco
    Rey, Elodie
    Barraud, Quentin
    Courtine, Gregoire
    Othmen, Riadh
    Reita, Valerie
    Bouchiat, Vincent
    Delacour, Cecile
    [J]. ADVANCED HEALTHCARE MATERIALS, 2019, 8 (18)
  • [4] Boyd I.W., 1992, LASER SURFACE PROCES
  • [5] Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory
    Chen, Chao
    Zhou, Jian
    Zhou, Tao
    Yong, Weixun
    [J]. NATURAL HAZARDS, 2021, 109 (02) : 1457 - 1479
  • [6] Multilayer Nanoporous Graphene Membranes for Water Desalination
    Cohen-Tanugi, David
    Lin, Li-Chiang
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2016, 16 (02) : 1027 - 1033
  • [7] Water Desalination across Nanoporous Graphene
    Cohen-Tanugi, David
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2012, 12 (07) : 3602 - 3608
  • [8] Recent applications of nanomaterials in water desalination: A critical review and future opportunities
    Daer, Sahar
    Kharraz, Jehad
    Giwa, Adewale
    Hasan, Shadi Wajih
    [J]. DESALINATION, 2015, 367 : 37 - 48
  • [9] Gao Y., 2021, CARBON
  • [10] A review on inorganic membranes for desalination and wastewater treatment
    Goh, P. S.
    Ismail, A. F.
    [J]. DESALINATION, 2018, 434 : 60 - 80