The numerical range of some periodic tridiagonal operators is the convex hull of the numerical ranges of two finite matrices

被引:1
|
作者
Itza-Ortiz, Benjamin A. [1 ]
Martinez-Avendano, Ruben A. [2 ]
Nakazato, Hiroshi [3 ]
机构
[1] Univ Autonoma Estado Hidalgo, Ctr Invest Matemat, Pachuca, Hidalgo, Mexico
[2] Inst Tecnol Autonomo Mexico, Dept Acad Matemat, Mexico City, DF, Mexico
[3] Hirosaki Univ, Dept Math & Phys, Hirosaki, Aomori, Japan
关键词
Numerical range; tridiagonal operators; SPECTRUM;
D O I
10.1080/03081087.2021.1957760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a conjecture stated by the first two authors establishing the closure of the numerical range of a certain class of n + 1-periodic tridiagonal operators as the convex hull of the numerical ranges of two tridiagonal (n + 1) x (n + 1) matrices. Furthermore, when n + 1 is odd, we show that the size of such matrices simplifies to n/2 + 1.
引用
收藏
页码:2830 / 2849
页数:20
相关论文
共 38 条
  • [1] On the numerical ranges of some tridiagonal matrices
    Chien, Ruey Ting
    Spitkovsky, Ilya M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 470 : 228 - 240
  • [2] The numerical range of a class of periodic tridiagonal operators
    Itza-Ortiz, Benjamin A.
    Martinez-Avendano, Ruben A.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 786 - 806
  • [3] The numerical range of a periodic tridiagonal operator reduces to the numerical range of a finite matrix
    Itza-Ortiz, Benjamin A.
    Martinez-Avendano, Ruben A.
    Nakazato, Hiroshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [4] LINE SEGMENTS ON THE BOUNDARY OF THE NUMERICAL RANGES OF SOME TRIDIAGONAL MATRICES
    Spitkovsky, Ilya M.
    Thomas, Claire Marie
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 693 - 703
  • [6] On the numerical range of some weighted shift matrices and operators
    Vandanjav, Adiyasuren
    Undrakh, Batzorig
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 : 76 - 88
  • [7] ON NUMERICAL RANGE AND NUMERICAL RADIUS OF CONVEX FUNCTION OPERATORS
    Zaiz, Khaoula
    Mansour, Abdelouahab
    KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (04): : 879 - 898
  • [8] NUMERICAL RANGES OF SOME FOGUEL OPERATORS
    Jiang, Muyan
    Spitkovsky, Ilya M.
    OPERATORS AND MATRICES, 2023, 17 (01): : 179 - 185
  • [9] Numerical range and numerical radius for some operators
    Karaev, M. T.
    Iskenderov, N. Sh.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (12) : 3149 - 3158
  • [10] Numerical ranges of weighted shift matrices with periodic weights
    Tsai, Ming Cheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (09) : 2296 - 2302