Nanocomposites Based on Waterborne Polyurethane Matrix and Fe3O4 Nanoparticles: Synthesis and Characterization

被引:2
作者
Meiorin, Cintia [1 ]
Scherzer, Selina L. [1 ,2 ]
Mucci, Veronica [1 ]
Actis, Daniel G. [3 ]
Zelis, Pedro Mendoza [3 ]
Schubert, Dirk W. [2 ]
Mosiewicki, Mirna A. [1 ]
Aranguren, Mirta, I [1 ]
机构
[1] Univ Nacl Mar del Plata, CONICET, Inst Invest Ciencia & Tecnol Mat INTEMA, Av Cristobal Colon 10850,B7606BWV, Mar Del Plata, Argentina
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Fac Engn, Inst Polymer Mat, Dept Mat Sci, Martensstr 7, D-91058 Erlangen, Germany
[3] Univ Nacl La Plata, CONICET, Inst Fis La Plata IFLP, Argentina Diagonal 113, RA-1900 La Plata, Argentina
关键词
magnetic properties; nanocomposites; nanomagnetites; waterborne polyurethanes; VEGETABLE-OIL; MAGNETITE NANOPARTICLES; CELLULOSE NANOCRYSTALS; RENEWABLE RESOURCES; SHAPE; MORPHOLOGY; NETWORKS; POLYMERS; BEHAVIOR;
D O I
10.1002/adem.202100381
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, the feasibility of producing waterborne polyurethane nanocomposites containing magnetic nanoparticles (MNPs) by casting method, to obtain films with potential magnetic properties, is shown. The characterization of the resulting nanocomposites is carried out using infrared spectroscopy, thermal analysis, colorimetry, tensile tests, microscopy and magnetic tests. The films become opaque and dark colored when MNP is incorporated. The mechanical behavior of the nanocomposites is that of tough plastics, with Young's modulus in the range of 106-143 MPa, increasing with the MNP concentration. Aggregation of the MNP takes place at concentrations above 1.5 wt%, as observed in scanning electron microscopy (SEM) images of the fracture surfaces. Magnetization saturation increases with the concentration of MNP. A small coercivity indicates the presence of a fraction of blocked particles whose size exceeds the critical size for superparamagnetism at the temperature of the measurements.
引用
收藏
页数:11
相关论文
共 55 条
[11]   Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites [J].
Fu, Heqing ;
Wang, Yin ;
Li, Xiaoya ;
Chen, Weifeng .
COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 126 :86-93
[12]  
Gennadios A, 1996, T ASAE, V39, P575, DOI 10.13031/2013.27537
[13]   Understanding particle formation in surfactant-free waterborne coatings prepared by emulsification of pre-formed polymers [J].
Gonzalez-Alvarez, Maria Jose ;
Paternoga, Jan ;
Breul, Katharina ;
Cho, Hyungjun ;
Roshandel, Mahtab Z. ;
Soleimani, Mohsen ;
Winnik, Mitchell A. .
POLYMER CHEMISTRY, 2017, 8 (19) :2931-2941
[14]   NANOCRYSTALLINE SOFT MAGNETIC-MATERIALS [J].
HERZER, G .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1992, 112 (1-3) :258-262
[15]   Bio-based waterborne polyurethanes reinforced with cellulose nanocrystals as coating films [J].
Hormaiztegui, M. Eugenia, V ;
Daga, Bernardo ;
Aranguren, Mirta, I ;
Mucci, Veronica .
PROGRESS IN ORGANIC COATINGS, 2020, 144
[16]   A novel polyurethanes from epoxidized soybean oil synthesized by ring opening with bifunctional compounds [J].
Karadeniz, Kemal ;
Calokoglu, Yakup ;
Sen, Mustafa Yasin .
POLYMER BULLETIN, 2017, 74 (07) :2819-2839
[17]   Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors [J].
Khalil, Mutasim I. .
ARABIAN JOURNAL OF CHEMISTRY, 2015, 8 (02) :279-284
[18]   Structural analysis of magnetic nanocomposites based on chitosan [J].
Kloster, Gianina A. ;
Muraca, Diego ;
Moscoso Londono, Oscar ;
Knobel, Marcelo ;
Marcovich, Norma E. ;
Mosiewicki, Mirna A. .
POLYMER TESTING, 2018, 72 :202-213
[19]   Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(γ-glutamic acid) as coating material [J].
Kumar, Ramesh ;
Inbaraj, B. Stephen ;
Chen, B. H. .
MATERIALS RESEARCH BULLETIN, 2010, 45 (11) :1603-1607
[20]   Cast films from soy protein isolates and fractions [J].
Kunte, LA ;
Gennadios, A ;
Cuppett, SL ;
Hanna, MA ;
Weller, CL .
CEREAL CHEMISTRY, 1997, 74 (02) :115-118