Localized Electrons Enhanced Ion Transport for Ultrafast Electrochemical Energy Storage

被引:50
|
作者
Chen, Jiewei [1 ]
Luo, Bi [1 ]
Chen, Qiushui [2 ]
Li, Fei [3 ,4 ]
Guo, Yanjiao [1 ]
Wu, Tom [5 ]
Peng, Peng [1 ]
Qin, Xian [2 ]
Wu, Gaoxiang [1 ]
Cui, Mengqi [1 ]
Liu, Lehao [1 ]
Chu, Lihua [1 ]
Jiang, Bing [1 ]
Li, Yingfeng [1 ]
Gong, Xueqing [3 ,4 ]
Chai, Yang [6 ]
Yang, Yongping [1 ]
Chen, Yonghua [7 ,8 ]
Huang, Wei [7 ,8 ,9 ]
Liu, Xiaogang [2 ]
Li, Meicheng [1 ]
机构
[1] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
[2] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[3] East China Univ Sci & Technol, Ctr Computat Chem, Key Lab Adv Mat, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[4] East China Univ Sci & Technol, Res Inst Ind Catalysis, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[5] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[6] Hong Kong Polytech Univ, Dept Appl Phys, Hung Hom, Kowloon, Hong Kong 999077, Peoples R China
[7] Nanjing Tech Univ, Key Lab Flexible Elect KLOFE, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Nanjing 210028, Peoples R China
[8] Nanjing Tech Univ, IAM, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Nanjing 210028, Peoples R China
[9] NPU, SIFE, Xian 710072, Peoples R China
关键词
ion transport; electrochemical energy storage; high loading mass; lithium-ion batteries; sodium-ion batteries; LITHIUM-ION; BLACK TIO2; ANODE MATERIAL; CAPACITY; ANATASE;
D O I
10.1002/adma.201905578
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rate-determining process for electrochemical energy storage is largely determined by ion transport occurring in the electrode materials. Apart from decreasing the distance of ion diffusion, the enhancement of ionic mobility is crucial for ion transport. Here, a localized electron enhanced ion transport mechanism to promote ion mobility for ultrafast energy storage is proposed. Theoretical calculations and analysis reveal that highly localized electrons can be induced by intrinsic defects, and the migration barrier of ions can be obviously reduced. Consistently, experiment results reveal that this mechanism leads to an enhancement of Li/Na ion diffusivity by two orders of magnitude. At high mass loading of 10 mg cm(-2) and high rate of 10C, a reversible energy storage capacity up to 190 mAh g(-1) is achieved, which is ten times greater than achievable by commercial crystals with comparable dimensions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Enhanced electrochemical performance of Li-ion batteries with nanoporous titania as negative electrodes
    Rahman, Md. Arafat
    Wang, Xiaojian
    Wen, Cuie
    JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (02) : 157 - 170
  • [42] FeOx-Based Materials for Electrochemical Energy Storage
    Ma, Jingyi
    Guo, Xiaotian
    Yan, Yan
    Xue, Huaiguo
    Pang, Huan
    ADVANCED SCIENCE, 2018, 5 (06)
  • [43] Graphene-based composites for electrochemical energy storage
    Wang, Bo
    Ruan, Tingting
    Chen, Yong
    Jin, Fan
    Peng, Li
    Zhou, Yu
    Wang, Dianlong
    Dou, Shixue
    ENERGY STORAGE MATERIALS, 2020, 24 : 22 - 51
  • [44] Nanostructured electrode materials for electrochemical energy storage and conversion
    Shukla, A. K.
    Kumar, T. Prem
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2013, 2 (01) : 14 - 30
  • [45] Graphene-based electrodes for electrochemical energy storage
    Xu, Chaohe
    Xu, Binghui
    Gu, Yi
    Xiong, Zhigang
    Sun, Jing
    Zhao, X. S.
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) : 1388 - 1414
  • [46] Graphene nanocomposites and applications in electrochemical energy storage materials
    Chaudhuri, Ananya
    Chaudhuri, Anwesa
    Joydhar, Abhik
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 1569 - 1581
  • [47] Electrochemical energy storage electrodes from fruit biochar
    Ehsani, Ali
    Parsimehr, Hamidreza
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2020, 284
  • [48] The Research Development of Quantum Dots in Electrochemical Energy Storage
    Wu, Ping
    Xu, Yuxia
    Zhan, Jingyi
    Li, Yan
    Xue, Huaiguo
    Pang, Huan
    SMALL, 2018, 14 (42)
  • [49] Carbonyl Chemistry for Advanced Electrochemical Energy Storage Systems
    Zou, Kangyu
    Deng, Wentao
    Silvester, Debbie S.
    Zou, Guoqiang
    Hou, Hongshuai
    Banks, Craig E.
    Li, Lingjun
    Hu, Jiugang
    Ji, Xiaobo
    ACS NANO, 2024, 18 (31) : 19950 - 20000
  • [50] Textile-Based Electrochemical Energy Storage Devices
    Huang, Qiyao
    Wang, Dongrui
    Zheng, Zijian
    ADVANCED ENERGY MATERIALS, 2016, 6 (22)