Localized Electrons Enhanced Ion Transport for Ultrafast Electrochemical Energy Storage

被引:50
|
作者
Chen, Jiewei [1 ]
Luo, Bi [1 ]
Chen, Qiushui [2 ]
Li, Fei [3 ,4 ]
Guo, Yanjiao [1 ]
Wu, Tom [5 ]
Peng, Peng [1 ]
Qin, Xian [2 ]
Wu, Gaoxiang [1 ]
Cui, Mengqi [1 ]
Liu, Lehao [1 ]
Chu, Lihua [1 ]
Jiang, Bing [1 ]
Li, Yingfeng [1 ]
Gong, Xueqing [3 ,4 ]
Chai, Yang [6 ]
Yang, Yongping [1 ]
Chen, Yonghua [7 ,8 ]
Huang, Wei [7 ,8 ,9 ]
Liu, Xiaogang [2 ]
Li, Meicheng [1 ]
机构
[1] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
[2] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[3] East China Univ Sci & Technol, Ctr Computat Chem, Key Lab Adv Mat, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[4] East China Univ Sci & Technol, Res Inst Ind Catalysis, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[5] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[6] Hong Kong Polytech Univ, Dept Appl Phys, Hung Hom, Kowloon, Hong Kong 999077, Peoples R China
[7] Nanjing Tech Univ, Key Lab Flexible Elect KLOFE, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Nanjing 210028, Peoples R China
[8] Nanjing Tech Univ, IAM, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Nanjing 210028, Peoples R China
[9] NPU, SIFE, Xian 710072, Peoples R China
关键词
ion transport; electrochemical energy storage; high loading mass; lithium-ion batteries; sodium-ion batteries; LITHIUM-ION; BLACK TIO2; ANODE MATERIAL; CAPACITY; ANATASE;
D O I
10.1002/adma.201905578
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rate-determining process for electrochemical energy storage is largely determined by ion transport occurring in the electrode materials. Apart from decreasing the distance of ion diffusion, the enhancement of ionic mobility is crucial for ion transport. Here, a localized electron enhanced ion transport mechanism to promote ion mobility for ultrafast energy storage is proposed. Theoretical calculations and analysis reveal that highly localized electrons can be induced by intrinsic defects, and the migration barrier of ions can be obviously reduced. Consistently, experiment results reveal that this mechanism leads to an enhancement of Li/Na ion diffusivity by two orders of magnitude. At high mass loading of 10 mg cm(-2) and high rate of 10C, a reversible energy storage capacity up to 190 mAh g(-1) is achieved, which is ten times greater than achievable by commercial crystals with comparable dimensions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Lithium-Ion-Based Electrochemical Energy Storage in a Layered Vanadium Formate Coordination Polymer
    Anjana, P. K.
    Babu, Binson
    Shaijumon, M. M.
    Thirumurugan, A.
    CHEMPLUSCHEM, 2020, 85 (06): : 1137 - 1144
  • [22] Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage
    Xu, Henghui
    Hu, Xianluo
    Sun, Yongming
    Luo, Wei
    Chen, Chaoji
    Liu, Yang
    Huang, Yunhui
    NANO ENERGY, 2014, 10 : 163 - 171
  • [23] Aqueous Electrochemical Energy Storage with a Mediator-Ion Solid Electrolyte
    Yu, Xingwen
    Gross, Martha M.
    Wang, Shaofei
    Manthiram, Arumugam
    ADVANCED ENERGY MATERIALS, 2017, 7 (11)
  • [24] Laser-Scribed Battery Electrodes for Ultrafast Zinc-Ion Energy Storage
    Liu, Bo
    Huang, Ailun
    Yuan, Xintong
    Chang, Xueying
    Yang, Zhiyin
    Lyle, Katelyn
    Kaner, Richard B.
    Li, Yuzhang
    ADVANCED MATERIALS, 2024, 36 (32)
  • [25] CNT-enhanced electrochemical property and sodium storage mechanism of Pb(NO3)2 as anode material for Na-ion batteries
    Lin, Xiaoting
    Li, Peng
    Shao, Lianyi
    Zheng, Xi
    Shui, Miao
    Long, Nengbing
    Wang, Dongjie
    Shu, Jie
    ELECTROCHIMICA ACTA, 2015, 169 : 382 - 394
  • [26] Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries
    Fang, Shan
    Bresser, Dominic
    Passerini, Stefano
    ADVANCED ENERGY MATERIALS, 2020, 10 (01)
  • [27] Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS2 Heterostructures for Energy Storage: Insights from Multiscale Modeling
    Gong, Feng
    Ding, Zhiwei
    Fang, Yin
    Tong, Chuan-Jia
    Xia, Dawei
    Lv, Yingying
    Wang, Bin
    Papavassiliou, Dimitrios V.
    Liao, Jiaxuan
    Wu, Mengqiang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) : 14614 - 14621
  • [28] The economic end of life of electrochemical energy storage
    He, Guannan
    Ciez, Rebecca
    Moutis, Panayiotis
    Kar, Soummya
    Whitacre, Jay F.
    APPLIED ENERGY, 2020, 273
  • [29] MXene: fundamentals to applications in electrochemical energy storage
    Ampong, Daniel Nframah
    Agyekum, Emmanuel
    Agyemang, Frank Ofori
    Mensah-Darkwa, Kwadwo
    Andrews, Anthony
    Kumar, Anuj
    Gupta, Ram K.
    DISCOVER NANO, 2023, 18 (01)
  • [30] Nanostructured energy materials for electrochemical energy conversion and storage: A review
    Zhang, Xueqiang
    Cheng, Xinbing
    Zhang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2016, 25 (06) : 967 - 984