A novel time efficient learning-based approach for smart intrusion detection system

被引:21
|
作者
Seth, Sugandh [1 ]
Singh, Gurvinder [1 ]
Chahal, Kuljit Kaur [1 ]
机构
[1] Guru Nanak Dev Univ, Dept Comp Sci & Engn, Amritsar, Punjab, India
关键词
Intrusion Detection System; Realistic; Responsive; Imbalanced Dataset; Machine Learning; Prediction latency; Time-Efficient; Hybrid Feature Selection; CIC-IDS-2018;
D O I
10.1186/s40537-021-00498-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Background The ever increasing sophistication of intrusion approaches has led to the dire necessity for developing Intrusion Detection Systems with optimal efficacy. However, existing Intrusion Detection Systems have been developed using outdated attack datasets, with more focus on prediction accuracy and less on prediction latency. The smart Intrusion Detection System framework evolution looks forward to designing and deploying security systems that use various parameters for analyzing current and dynamic traffic trends and are highly time-efficient in predicting intrusions. Aims This paper proposes a novel approach for a time-efficient and smart Intrusion Detection System. Method Herein, we propose a Hybrid Feature Selection approach that aims to reduce the prediction latency without affecting attack prediction performance by lowering the model's complexity. Light Gradient Boosting Machine (LightGBM), a fast gradient boosting framework, is used to build the model on the latest CIC-IDS 2018 dataset. Results The proposed feature selection reduces the prediction latency ranging from 44.52% to 2.25% and the model building time ranging from 52.68% to 17.94% in various algorithms on the CIC-IDS 2018 dataset. The proposed model with hybrid feature selection and LightGBM gives 97.73% accuracy, 96% sensitivity, 99.3% precision rate, and comparatively low prediction latency. The proposed model successfully achieved a raise of 1.5% in accuracy rate and 3% precision rate over the existing model. An in-depth analysis of network parameters is also performed, which gives a deep insight into the variation of network parameters during the benign and malicious sessions.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] FL-IIDS: A novel federated learning-based incremental intrusion detection system
    Jin, Zhigang
    Zhou, Junyi
    Li, Bing
    Wu, Xiaodong
    Duan, Chenxu
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 151 : 57 - 70
  • [22] A context-aware robust intrusion detection system: a reinforcement learning-based approach
    Sethi, Kamalakanta
    Rupesh, E. Sai
    Kumar, Rahul
    Bera, Padmalochan
    Madhav, Y. Venu
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2020, 19 (06) : 657 - 678
  • [23] A context-aware robust intrusion detection system: a reinforcement learning-based approach
    Kamalakanta Sethi
    E. Sai Rupesh
    Rahul Kumar
    Padmalochan Bera
    Y. Venu Madhav
    International Journal of Information Security, 2020, 19 : 657 - 678
  • [24] Securing fog-assisted IoT smart homes: a federated learning-based intrusion detection approach
    Bensaid, Radjaa
    Labraoui, Nabila
    Saidi, Hafida
    Salameh, Haythem Bany
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):
  • [25] Effective intrusion detection model through the combination of a signature-based intrusion detection system and a machine learning-based intrusion detection system
    Weon, Ill-Young
    Song, Doo Heon
    Lee, Chang-Hoon
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (06) : 1447 - 1464
  • [26] Deep Learning-Based Intrusion Detection System for Internet of Vehicles
    Ahmed, Imran
    Jeon, Gwanggil
    Ahmad, Awais
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2023, 12 (01) : 117 - 123
  • [27] Machine Learning-Based Intrusion Detection System For Healthcare Data
    Balyan, Amit Kumar
    Ahuja, Sachin
    Sharma, Sanjeev Kumar
    Lilhore, Umesh Kumar
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 290 - 294
  • [28] Effectiveness of an Adaptive Deep Learning-Based Intrusion Detection System
    Villegas-Ch, William
    Govea, Jaime
    Gutierrez, Rommel
    Navarro, Alexandra Maldonado
    Mera-Navarrete, Aracely
    IEEE ACCESS, 2024, 12 : 184010 - 184027
  • [29] Deep Learning-Based Hybrid Intelligent Intrusion Detection System
    Khan, Muhammad Ashfaq
    Kim, Yangwoo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 671 - 687
  • [30] Federated learning-based intrusion detection system for Internet of Things
    Najet Hamdi
    International Journal of Information Security, 2023, 22 : 1937 - 1948