The Characterization of Different Flavodoxin Reductase-Flavodoxin (FNR-Fld) Interactions Reveals an Efficient FNR-Fld Redox Pair and Identifies a Novel FNR Subclass

被引:9
作者
Gudim, Ingvild [1 ]
Hammerstad, Marta [1 ]
Lofstad, Marie [1 ]
Hersleth, Hans-Petter [1 ,2 ]
机构
[1] Univ Oslo, Sect Biochem & Mol Biol, Dept Biosci, N-0316 Oslo, Norway
[2] Univ Oslo, Dept Chem, Sect Chem Life Sci, N-0316 Oslo, Norway
关键词
ESCHERICHIA-COLI; BACILLUS-SUBTILIS; SWISS-MODEL; EVOLUTIONARY CONSERVATION; THIOREDOXIN REDUCTASE; CONFORMATIONAL-CHANGE; ELECTRON-TRANSFER; PROTEINS; CONSURF; OXIDOREDUCTASE;
D O I
10.1021/acs.biochem.8b00674
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Flavodoxins (Flds) are small, bacterial proteins that transfer electrons to various redox enzymes. Flavodoxins are reduced by ferredoxin/flavodoxin NAIDP(+) oxidoreductases (FNRs), but little is known of the FNR-Fld interaction. Here, we compare the interactions of two flavodoxins (Fld1-2), one flavodoxin-like protein (NrdI), and three different thioredoxin reductase (TrxR)-like FNRs (FNR1-3), all from Bacillus cereus. Steady-state kinetics shows that the FNR2-Fld2 electron transfer pair is particularly efficient, and redox potential measure also indicate that this is the most favorable electron donor/acceptor pair. Furthermore, crystal structures of FNR1 and FNR2 show that the proteins have crystallized in different conformations, a closed and an open conformation, respectively. We suggest that a large-scale conformational rearrangement takes place during the FNR catalytic cycle to allow for the binding and reduction of the Fld and, subsequently, the re-reduction of the FNR by NADPH. Finally, inspection of the residues surrounding the FAD cofactor in the FNR active site shows that a key isoalloxazine ring-stacking residue is different in FNR1 and FNR2, which could explain the large difference in catalytic efficiency between the two FNRs. To date, all of the characterized TrxR-like FNRs have a residue with aromatic character stacking against the FAD isoalloxazine ring, and this has been thought to be a conserved feature of this class of FNRs. FNR1, however, has a valine in this position. Bioinformatic analysis shows that the TrxR-like FNRs can actually be divided into two groups, one group where the FAD-stacking residue has aromatic character and another group where it is valine.
引用
收藏
页码:5427 / 5436
页数:10
相关论文
共 54 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Towards automated crystallographic structure refinement with phenix.refine [J].
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Moriarty, Nigel W. ;
Mustyakimov, Marat ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Zwart, Peter H. ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 :352-367
[3]   Structural and functional diversity of ferredoxin-NADP+ reductases [J].
Aliverti, Alessandro ;
Pandini, Vittorio ;
Pennati, Andrea ;
de Rosa, Matteo ;
Zanetti, Giuliana .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2008, 474 (02) :283-291
[4]  
[Anonymous], 2015, The JyMOL Molecular Graphics Development Component, DOI [10.1007/978-1-4939-7231-9_4, DOI 10.1007/978-1-4939-7231-9_4]
[5]   ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids [J].
Ashkenazy, Haim ;
Erez, Elana ;
Martz, Eric ;
Pupko, Tal ;
Ben-Tal, Nir .
NUCLEIC ACIDS RESEARCH, 2010, 38 :W529-W533
[6]   Dynamics in electron transfer protein complexes [J].
Bashir, Qamar ;
Scanu, Sandra ;
Ubbink, Marcellus .
FEBS JOURNAL, 2011, 278 (09) :1391-1400
[7]   iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM [J].
Battye, T. Geoff G. ;
Kontogiannis, Luke ;
Johnson, Owen ;
Powell, Harold R. ;
Leslie, Andrew G. W. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 :271-281
[8]   Toward the estimation of the absolute quality of individual protein structure models [J].
Benkert, Pascal ;
Biasini, Marco ;
Schwede, Torsten .
BIOINFORMATICS, 2011, 27 (03) :343-350
[9]   Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology [J].
Bertoni, Martino ;
Kiefer, Florian ;
Biasini, Marco ;
Bordoli, Lorenza ;
Schwede, Torsten .
SCIENTIFIC REPORTS, 2017, 7
[10]   SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information [J].
Biasini, Marco ;
Bienert, Stefan ;
Waterhouse, Andrew ;
Arnold, Konstantin ;
Studer, Gabriel ;
Schmidt, Tobias ;
Kiefer, Florian ;
Cassarino, Tiziano Gallo ;
Bertoni, Martino ;
Bordoli, Lorenza ;
Schwede, Torsten .
NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) :W252-W258