A complete closed form vectorial solution to the Kepler problem

被引:15
作者
Condurache, Daniel [1 ]
Martinusi, Vladimir [1 ]
机构
[1] Tech Univ Gheorghe Asachi, Dept Theoret Mech, Iasi, Romania
关键词
Kepler problem; vectorial regularization; Sundman transformation; classical mechanics;
D O I
10.1007/s11012-007-9065-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper gives an exact vectorial solution to the Kepler problem. A vectorial regularization that linearizes the Kepler problem is given using a Sundman transformation. Closed form expressions describing the Keplerian motion are deduced. A unified approach to the classic Kepler problem is offered, by studying both rectilinear and non-rectilinear Keplerian motions with the same instrument. The approach is an elementary one and only simple vectorial computations are involved.
引用
收藏
页码:465 / 476
页数:12
相关论文
共 22 条
[1]   A note on the Kepler problem [J].
Anosov, DV .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2002, 8 (03) :413-442
[2]   REGULARIZATION OF 2 BODY PROBLEM [J].
BURDET, CA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1967, 18 (03) :434-&
[3]   Kepler's problem in rotating reference frames - Part 1: Prime integrals, vectorial regularization [J].
Condurache, Daniel t ;
Martinusi, Vladimir .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (01) :192-200
[4]  
DEPRIT A, 1994, CELEST MECH DYN ASTR, V58, P1510
[5]   PREHISTORY OF LAPLACE OR RUNGE-LENZ VECTOR [J].
GOLDSTEIN, H .
AMERICAN JOURNAL OF PHYSICS, 1976, 44 (11) :1123-1124
[6]  
Goldstein H., 2002, CLASSICAL MECH
[7]  
KUSTAANHEIMO P, 1965, J REINE ANGEW MATH, V218, P204
[8]  
KUSTAANHEIMO PE, 1964, SPINOR REGULARIZATIO, V102, P3
[9]  
LANDAU L, 1981, MECABUQUE ED MIR
[10]  
LAPLACE PS, 1969, CELESTIAL MECH, V1