Relaxation element method

被引:10
作者
Deryugin, YY [1 ]
Lasko, GV
Schmauder, S
机构
[1] Russian Acad Sci, Inst Strength Phys & Mat Sci, Siberian Branch, Tomsk, Russia
[2] Univ Stuttgart, Staatliche Mat Prufungsanstalt, D-7000 Stuttgart, Germany
关键词
plastic deformation; stress; strain;
D O I
10.1016/S0927-0256(98)00004-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An effective method is represented, allowing: (a) to construct analytically fields of plastic deformation with gradients within the local volumes of an arbitrary plastically deforming solid; (b) to define corresponding distributions of stress tensor components; (c) to simulate the process of localization of plastic deformation (LPD). The original analytical solutions for stress fields, from the sites of LPD in the form of circle, ellipse, square, and drawn right-angled quadrangle, oriented perpendicular to tensile axis are represented. A mesomechanical model of LPD development in polycrystals is offered, taking work hardening, a number of sliding systems and edge effects into account. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:189 / 203
页数:15
相关论文
共 17 条
[1]  
ALEKHIN VP, 1974, FIS HIMIJA OBRABOTKY, V4, P107
[2]  
[Anonymous], 1975, THEORY ELASTICITY
[3]  
BELL JF, 1984, SMALL DEFORMATION, V1
[4]  
Crouch SL., 1987, BOUNDARY ELEMENT MET
[5]  
DERYUGIN YY, 1994, RUSSIAN PHYS J, V37, P120
[6]  
DERYUGIN YY, 1995, RUSSIAN PHYS J, V38, P449
[7]  
DERYUGIN YY, 1995, PHYSICAL MESOMECHANI, V1, P131
[8]  
DEWIT R, 1977, CONTINUUM THEORY DIS
[9]  
ESHELBY J, 1977, CONTINUUM THEORY DIS
[10]  
HAN H, 1988, THEORY ELASTICITY